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Abstract - Mining  association  rules  is  an  essential  task  for 
knowledge discovery. From a large amount of data, potentially 
useful information may be discovered. Association rules are 
used to discover  the  relationships of items or attributes 
among huge data. These rules can be effective in uncovering 
unknown relationships, providing results that can be the basis of 
forecast and decision.  The effective management of business is 
significantly	dependent	on	the	quality	of	its	decision	making.	Past	
transaction data can be analyzed to discover customer behaviors 
such	that		the	quality	of	business	decision	can	be	improved.	The	
approach of mining association rules focuses on discovering 
large itemsets, which are groups of items   that appear together 
in	an	adequate	number	of	 transactions.	The	proposed	method	
focuses on a combined approach to generate association  rules 
from a large database  of  customer  transactions.  This  approach  
scans  the database  once  to  construct  an  association  graph  
and  clustering tables and then traverses  the  graph  to  generate  
all  large  itemsets. The  proposed  algorithm  will outperforms 
other algorithms which need to make multiple passes over the 
database.
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I. IntroductIon

Data mining has high applicability in the retail industry. The 
effective management of business is extensively dependent on 
the quality of its decision making. Therefore, it is important 
to improve the quality of business decisions by analyzing 
past transaction data to discover customer purchasing 
behaviours. In order to support this analysis, a sufficient 
amount of transactions needs to be collected and stored in 
a database.  Each transaction in the database consists of the 
items purchased in the transaction besides other information 
like transaction date and time, customer name, quantity, price, 
and other information. All what was taken in consideration 
is the set of items bought together in a transaction. Because 
the amount of these transactions’ data can  be  very  large,  an  
efficient  algorithm  needs  to  be designed for discovering 
useful information from these huge transactional datasets. 
Mining frequent itemset and association rules is a popular and 
well researched method for discovering interesting relations 
between variables in large databases. Association rules, first 
introduced in 1993, are used to identify relationships among 
a set of items in a database. These relationships are not based 
on inherent properties of the data themselves, but rather based 
on co- occurrence of the data items. Association rules are used 
to discover  the  relationships,  and  potential  associations,  
of items or attributes among huge data. These rules can be 
effective in uncovering unknown relationships, providing 

results that can be the basis of forecast and decision. They have 
proven to be very useful tools for an enterprise as it strives to 
improve its competitiveness and  prosperity. Association rule 
mining (ARM) in relational database management systems 
generally transforms the database into (TID, item) format, 
where TID stands for a unique transaction identifier and 
item stands for different items purchased by the customers. 
There will be multiple entries for a given transaction   ID,   
because   one   transaction   ID   indicates purchase of one 
particular customer and a customer can purchase as many 
items as he/ she want. Any association rule will hold if its 
support and confidence are equal to or greater than the user 
specified minimum support (S)  and confidence   (C).   The 
final step involves generating strong rules having a minimum 
confidence from the frequent itemsets. It also includes 
generating and testing the confidence of all rules. 

II. background

The literature review is done to get an insight of the 
association rule mining algorithms in data mining. It is 
necessary to identify various methodologies that could 
possibly used to identify the relationships among itemsets of 
various transactions in database. The objective of this portion 
of literature review is to identify the existing association rule 
mining techniques..  

A. Basic Concepts & Basic Association Rules Algorithms

Let I=I1, I2, … , Im be a set of m distinct attributes, T be 
transaction that contains a set of items such that T ⊆ I, D 
be a database with different transaction records Ts. An 
association rule is an implication in the form of X⊆Y, where 
X, Y ⊂ I are sets of items called itemsets, and X ∩ Y =∅. 
X is called antecedent while Y is called consequent, the rule 
means X implies Y. There are two important basic measures 
for association rules, support(s) and confidence(c). Since the 
database is large and users concern about only those frequently 
purchased items, usually thresholds of support and confidence 
are predefined by users to drop those rules that are not so 
interesting or useful. The two thresholds are called minimal 
support and minimal confidence respectively. Support(s) of 
an association rule is defined as the percentage/fraction of 
records that contain X ∪ Y to the total number of records 
in the database. Suppose the support of an item is 0.1%, it 
means only 0.1 percent of the transaction contain purchasing 
of this item. Confidence of an association rule is defined as 
the percentage/fraction of the number of transactions that 
contain X ∪ Y to the total number of records that contain X. 
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Confidence is a measure of strength of the association rules, 
suppose the confidence of the association rule X⇒Y is 80%, it 
means that 80% of the transactions that contain X also contain 
Y together. In general, a set of items (such as the antecedent or 
the consequent of a rule) is called an itemset. The number of 
items in an itemset is called the length of an itemset. Itemsets 
of some length k are referred to as k-itemsets.

Generally, an association rules mining algorithm contains the 
following steps:
• The set of candidate k-itemsets is generated by 

1-extensions of the large (k -1)-itemsets generated in the 
previous iteration.

• Supports for the candidate k-itemsets are generated by a 
pass over the database.

• Itemsets that do not have the minimum support are 
discarded and the remaining itemsets are called large 
k-itemsets.

This process is repeated until no more large itemsets are 
found.

1) Apriori Algorithm

Apriori is a classic algorithm of association rule mining. 
Apriori is designed to operate on large database containing 
transactions (for example, collections of items bought by 
customers, or details of a website frequentation). As is 
common in association rule mining, given a set of itemsets (for 
instance, sets of retail transactions, each listing individual 
items purchased), the algorithm attempts to find subsets which 
are common to at least a minimum number C of the itemsets. 
Apriori uses a “bottom up” approach, where frequent subsets 
are extended one item at a time (a step known as candidate 
generation), and groups of candidates are tested against the 
data. The algorithm terminates when no further successful 
extensions are found.

Apriori is more efficient during the candidate generation 
process [3]. Apriori uses pruning techniques to avoid 
measuring certain itemsets, while guaranteeing completeness. 
These are the itemsets that the algorithm can prove will not 
turn out to be large. However there are two bottlenecks of the 
Apriori algorithm. One is the complex candidate generation 
process that uses most of the time, space and memory. 
Another bottleneck is the multiple scan of the database. Based 
on Apriori algorithm, many new algorithms were designed 
with some modifications or improvements.

2) FP-Tree

Han et. al.[4] proposed a novel frequent pattern tree (FP-
tree) structure, which   is   an extended prefix-tree structure 
for storing compressed, crucial information about frequent 
patterns, and developed an efficient  FP-tree  based  mining  
method. It is another milestone in the development of 
association rule mining, which breaks the main bottlenecks 

of the Apriori. The frequent itemsets are generated with only 
two passes over the database and without any candidate 
generation process. FP-tree is an extended prefix-tree 
structure storing crucial, quantitative information about 
frequent patterns. Only frequent length-1 items will have 
nodes in the tree, and the tree nodes are arranged in such a 
way that more frequently occurring nodes will have better  
chances of sharing nodes than less frequently occurring nodes 
will have better  chances of sharing nodes than less frequently 
occurring ones. FP-Tree scales much better than Apriori 
because as the support threshold goes down, the number as 
well as the length of frequent itemsets increase dramatically. 
The candidate sets that Apriori must handle become extremely 
large, and the pattern matching with a lot of candidates by 
searching through the transactions becomes very expensive. 
The frequent patterns generation process includes two sub 
processes: constructing the FT-Tree, and generating frequent 
patterns from the FP-Tree. The mining result is the same with 
Apriori series algorithms. To sum up, the efficiency of FP-
Tree algorithm account for three reasons. First the FP-Tree is 
a compressed representation of the original database because 
only those frequent items are used to construct the tree, other 
irrelevant information are pruned. Secondly this algorithm 
only scans the database twice. Thirdly, FP-Tree uses a divide 
and conquer method that considerably reduced the size of the 
subsequent conditional FP-Tree. 

Every algorithm has his limitations, for FP-Tree it is difficult 
to be used in an interactive mining system. During the 
interactive mining process, users may change he threshold 
of support according to the rules. However for FP-Tree the 
changing of support may lead to repetition of the whole 
mining process. Another limitation is that FP-Tree is that it 
is not suitable for incremental mining. Since as time goes on 
databases keep changing, new datasets may be inserted into 
the database, those insertions may also lead to a repetition of 
the whole process if we employ FP-Tree algorithm. 

3) Cluster Based Association Rule Mining

Tsay and Chiang  proposed an efficient cluster based 
association rule mining method (CBAR)[7] for   discovering 
the large itemsets. The CBAR method create cluster tables 
by scanning the database once, and then clustering the 
transaction records to the k-th cluster table, where the length 
of a record is k. Moreover, the large itemsets are generated 
by contrasts with the partial cluster tables. This method  not 
only prunes considerable amounts of data reducing the time 
needed to perform data scans and requiring less contrast, but 
also ensures the correctness of the mined results.

4) Cluster Based Association Rule (CBAR)

The performance is dramatically decreased in the process of 
many association rule algorithms. This is due to the fact that 
a database is repeatedly scanned to contrast each candidate 
itemset with the whole database level by level in the process 
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of mining association rules. If an alternative method can 
decrease the number of database scans, and reduce the 
number of contrasts, efficiency will be improved. Thus we 
propose an efficient CBAR method for discovering the large 
itemsets, and the main characteristics are the following. 
CBAR only requires a single scan of the transaction database, 
followed by contrasts with the partial cluster tables. This not 
only prunes considerable amounts of data reducing the time 
needed to perform data scans and requiring less contrast, but 
also ensures the correctness of the mined results.

III. ProPosed method

This chapter sets out the methodology adopted for the project 
study. Through the study of literature survey has identified 
different association rule mining techniques still there is 
a need to find the time efficient method to mine strong 
association rules from large database. The proposed method 
to find relationship among itemsets  scans  the database  once  
to  construct  an  association  graph  and  then traverses  the  
graph  to  generate  all  large  itemsets.  In the clustering 
step, each transaction is clustered to the k-th cluster, where 
the length of a transaction is k. Meanwhile, a clustering 
table is built to count the occurrences of each item in each 
cluster, subsequently the clustering- table will be used in the 
candidate generation.

The proposed algorithm (GCARM) has two main advantages: 
one is the reduction of the database scans and the other is 
the elimination of candidate k-itemsets of order 3 and above. 
Figure 3.1 presents an overview of GCARM algorithm steps 
where tj  is jth transaction and M is total no of transactions.

A. Algorithm

 The algorithm scans the database once to build a graph of 
items and a clustering-table. This scan is enough to find 
frequent 1-itemsets and frequent 2-itemsets. There is no 
need to generate candidate 2-itemsets and hence no need to 
scan the database to discover frequent 2-itemsets. After that, 
GCARM works iteratively starting from frequent 2-itemsets 
(F2) in the sense that frequent itemsets that are discovered in 
one iteration will be used as the basis to generate candidate 
itemsets in the next iteration. As will be described later, the 
candidate generation step is similar to that in the Apriori 
algorithm but here we employ clustering technique to 
eliminate some infrequent candidate itemsets.

The Build-Graph algorithm build a complete undirected 
graph  G  =  (V,  E)  using  all  transaction  in  the  database. 
Initially, the graph G is the subgraph of the first transaction. 
For each transaction t in the database, the algorithm build a 
complete undirected subgraph Gt  = (Vt, Et), where Vt  is 
the set of all items in t and Et  is the set of all edges between 
every 2- subset itemsets in t. A counter is associated with each 
vertex or edge that stores the occurrences of that vertex or 
edge and is initialized to 1. After building the subgraph Gt, 

a new version of graph G is created by merging G and Gt. If 
there are any similar vertices and edges between Gt   and G, 
their counters are summed up. 
GCARM(int minsup)
G ← ∅
C1  = {set of all items}
for all transactions t ∈ D do
  Build_Graph(G, t); 
Create_Cluster(t, length(t));
  Parse_Graph(G);
for (k = 3; Ck ≠  ∅; k++) do
 For every itemset P ∈ Ck do
   Wp = Calculate_weight(P,k)
    If Wp > minsup then
     Add P to Fk
   If Fk  ≠  ∅  then
     Ck+1  ←   Fk  U  Fk 
// Union  Fk with Fk to generate ck+1,     Ck+2,….
Build-Graph(graph G, transaction t)
for each item i ∈ t do
V[G] = V[G] U  {i}
  Count[i] = 1;
for each 2-subset itemset e ∈ t do
 E[G]← E[G] ∪  {e} 
  Count[e] = 1; 
if (there are similar ertices and edges)
   Merge(vertices and edges);

In the clustering step, each transaction is clustered to the 
k-th cluster, where the length of a transaction is k. Cluster 
the transaction records by length and store each transaction 
record into the cluster table.
Create_Cluster(transaction t, int n)
// Add entry in the cluster table(n)
  for each item i ∈ t do
   Cluster-table[i][n]=1; 

The function Parse_Graph searches the graph to find 
frequent 1- itemsets and Candidate 2-itemsets. The function 
Parse_Graph traverses each vertex and edge in the graph, if 
the counter of a vertex is greater than or equal the minimum 
support then the corresponding item is inserted into the set 
of frequent  1-itemsets  (F1)  and all the edges in the graph 
represents association between 2  items which gives candidate 
itemset (C2)

 Parse_Graph(graph G)
  for each vertex v ∈ V[G] do
   If (count[v] ≥ minsup) then
    F1  ← F1 ∪{v};
   for each edge e ∈ E[G]do
    C2  ← C2 ∪{e};

Now algorithm parses each candidate itmesets and calcaulates 
weight (Wp) of each itemset P. Association between two items 
considering Wp can also be represented in a matrix format as 
shown in figure 3.5. If this weight Wp is more than minimum 



support then we add this itemset (P) to frequent itemset (Fk).  
Then we perform Union operation on Fk with Fk to generate 
candidate itemset Ck+1 and so on. The algorithm repeated 
until Ck results empty.

Calculate_weight(P,k)
Count(P)= Get count of occurrence of 
 P from Cluster_table
// For k=2, this is count of edge from graph 
Fot each subset item S P do
  Psum = 0
// Get count of individual items and add it
Psum = Count[occurance(S1) 
 OR occurance(S2)… OR occurance(P)
  Wp = Count(P) / Psum
  Return Wp

Once the frequent itemsets have been found, generating 
interesting association rules is a straightforward step. 
Interesting association rules are the ones that satisfy the 
minimum   support   and   the   minimum   confidence.  Figure 
shows the algorithm for association rules generation

Generate-Rule(float minconf)
for all frequent itemset f do
for all nonempty subset s of f do
If (support(s)/support(f) > minconf) then
 Add “s → (f-s)” to the set of rules

B. An Example
We provide an example to further explain the application of 
proposed algorithm. There are 20 transactions in the database. 
An example transaction database is shown in Table 1.
Part 1 of the algorithm scans the database once to build a 
graph of items and a clustering-table. This scan is enough to 
find frequent 1-itemsets and Candidate 2-itemsets

table I transactIon database

TID ITEMS TID ITEMS
T1 A,B,C T11 A,B,C
T2 B T12 C,E
T3 A,E T13 B,C,D,E
T4 A,C,D,E T14 C,D
T5 A,C T15 B,C,D
T6 A,C,E T16 A,D,E
T7 C T17 B,C
T8 B,C,E T18 E
T9 A,B,C,D T19 A,C,D
T10 D T20 A,B,C,D

Figure 3.2   shows sub graphs for three transactions. After 
all transactions have been read, the graph is built. Vertices’ 
counters hold the supports of the corresponding items. 
Edge’s counters on the other hand hold the supports of the 
corresponding 2-subset itemsets.

For every transaction the subgraph will be drawn as shown,
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Fig. 3.2 Subgraph

Similarly for all transactions subgraphs will be drawn and all 
subgraphs will be merged to get the final graph G as shown 
in Figure 3.3.
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Fig. 3.3 Final graph G

For above example based on the built graph, cluster table can 
be formed as shown in table 2. Cluster the transaction records 
by length and store each transaction record into the cluster 
table. Using Boolean annotation to denote the appearance and 
disappearance of each item.

There are four cluster tables, named Cluster_Table(k),where 
1 ≤ k ≥ 4. For above example the cluster table is formed as 
shown in table 2
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table: II cluster table

Itm Cluster-1 Cluster-2
A 0 0 0 0 1 1 0 0 0
B 1 0 0 0 0 0 0 0 1
C 0 1 0 0 0 1 1 1 1
D 0 0 1 0 0 0 0 1 0
E 0 0 0 1 1 0 1 0 0

Itm Cluster-3 Cluster-4
A 1 1 0 1 0 1 1 1 1 1
B 1 0 1 1 1 0 0 0 1 1 1
C 1 1 1 1 1 0 1 1 1 1 1
D 0 0 0 0 1 1 1 1 1 1 1
E 0 1 1 0 0 1 0 1 0 1 0

The function Parse_Graph searches the graph to find frequent 
1-itemsets and Candidate 2-itemsets. For given example 
following metrics is presented which gives edge count to find 
candidate-2 itemset.

table: III metrIcs

Items A B C D E
A 0 4 8 5 4
B 4 0 8 4 2
C 8 8 0 7 5
D 5 4 7 0 3
E 4 2 5 3 0

Function Calculate_Weight computes weight of each itemset 
of Ck in order to find frequent-2 itemset. To calculate weight 
between two items i and j of individual itemset following 
method is used in the proposed algorithm.

Wp= Count of Occurrence of items ( i, j) / Count of 
occurrence of  (i ) OR  Count of occurrence of  ( j ) OR  Count 
of occurrence of  ( i , j ) 

Now to find frequent-2 itemset the appropriate support is 
considered and for that the association value indicated in 
above matrix is re-calculated to get strong frequent-2 itemset. 

table: Iv modIfIed metrIc 

Items A B C D E
A 0 26% 47% 35% 28%
B 26% 0 50% 28% 13%
C 47% 50% 0 41% 27%
D 35% 28% 41% 0 21%
E 28% 13% 27% 21% 0

Candidate-2 itemset for above example will be {AB,AC,AD,
AE,BC,BD,BE,CD,CD,DE}.  Considering minimum support 
as 30% and based on above matrix frequent-2 itemset will be 

resulted as {AC,AD,BC,CD}.  After joining above frequent-2 
itemset (F2) with (F2) we get candidate-3 itemset as below  
{ACD,ABC,BCD}. 
In order to generate frequent-3 itemset, it is necessary to 
compute the number of occurrence of each candidate in the 
cluster table(3). Again the entire cluster table is scanned to 
find the number of occurrence of every item of every subset of 
candidate itemset. Consider the min support as 20%, for given 
example freguent-3 itemset (F3) is {ACD, ABC, BCD}.
Generate the Candidate-4 itemsets ( C4 ) by combining the 
items of F3 in order to generate candidate 4-itemsets that are 
labeled C4. The itemset of C4 is {A,B,C,D}. The minimum 
support (MinSup) is specified as 15%. The candidate itemset 
{A,B,C,D} occurs only twice in the Cluster_Table(4) therefore 
its support is 10%, less than the minimum support 15%. So 
F4=NULL, and so is C5 and the algorithm terminates.
Once the frequent itemsets have been found, generating 
interesting association rules is a straightforward step. 
Interesting association rules are the ones that satisfy the 
minimum   support   and   the   minimum   confidence.  Figure 
shows the algorithm for association rules generation.
Once the frequent itemsets have been found, generating 
interesting association rules is a straightforward step. 
Interesting association rules are the ones that satisfy the 
minimum   support   and   the   minimum   confidence.  Figure 
shows the algorithm for association rules generation.
For given example for frequent item subset {ACD} 
associations rules will be generated by given algorithm are 
as follows,

R1:A^C→D    ACD/AC     4/8 50%
R2:A^D→C    ACD/AD 4/5 80%
R3:C^D→A     ACD/CD   4/7 57%
R4:A→C^D    ACD/A 4/10 40%
R5: C→A^D   ACD/C 4/15 26%
R6:D→A^C    ACD/D 4/9 44%
From above results it is clear that rule R2 is strongest among 
all which means that whenever items A and D has been 
purchased maximum times item C has also been purchased. 
Similarly for remaining frequent itemset the association can 
be found.
In this way the strong association rules can be generated 
efficiently to discover customer behaviors such that the 
quality of business decision can be improved. 

Iv. conclusIon

From the literature review, it is clear that there are many 
association rule mining techniques are available and they 
are still evolving to get faster and accurate results. Every 
technique is an improvement over other but the only drawback 
of existing methods are they take more time to scan the huge 
database again and again. The only intention behind this study 



is to find the efficient technique to mine strong association rule 
among the itemsets of large database in short span of time. 
This research contributes to enhancing knowledge discovery 
techniques used in data mining. This research involves an 
empirical examination of the data set which will be worked 
upon. The study makes some contributions to the literature on 
various rule mining methods and its efficiency and accuracy 
in the area of data mining.
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