
AJCST Vol.1 No.1 January - June 201247

GCARM: A Combined Approach to Data Mining
Seema Desai1, Lata Ragha2 and Vimla Jethani3

1Department of Information Technology, SIES Graduate School of Technology, Nerul, Navi Mumbai, India
2&3Department of Computer Science and Engineering, Ramrao Adik Institute of Technology, Nerul Navi Mumbai, India

E-mail: esaiseema83@gmail.com, lata.ragha@gmail.com

Abstract - Mining association rules is an essential task for
knowledge discovery. From a large amount of data, potentially
useful information may be discovered. Association rules are
used to discover the relationships of items or attributes
among huge data. These rules can be effective in uncovering
unknown relationships, providing results that can be the basis of
forecast and decision. The effective management of business is
significantly	dependent	on	the	quality	of	its	decision	making.	Past	
transaction data can be analyzed to discover customer behaviors
such	that		the	quality	of	business	decision	can	be	improved.	The	
approach of mining association rules focuses on discovering
large itemsets, which are groups of items that appear together
in	an	adequate	number	of	 transactions.	The	proposed	method	
focuses on a combined approach to generate association rules
from a large database of customer transactions. This approach
scans the database once to construct an association graph
and clustering tables and then traverses the graph to generate
all large itemsets. The proposed algorithm will outperforms
other algorithms which need to make multiple passes over the
database.

Keywords - Association graph, association rule, clustering tables

I. IntroductIon

Data mining has high applicability in the retail industry. The
effective management of business is extensively dependent on
the quality of its decision making. Therefore, it is important
to improve the quality of business decisions by analyzing
past transaction data to discover customer purchasing
behaviours. In order to support this analysis, a sufficient
amount of transactions needs to be collected and stored in
a database. Each transaction in the database consists of the
items purchased in the transaction besides other information
like transaction date and time, customer name, quantity, price,
and other information. All what was taken in consideration
is the set of items bought together in a transaction. Because
the amount of these transactions’ data can be very large, an
efficient algorithm needs to be designed for discovering
useful information from these huge transactional datasets.
Mining frequent itemset and association rules is a popular and
well researched method for discovering interesting relations
between variables in large databases. Association rules, first
introduced in 1993, are used to identify relationships among
a set of items in a database. These relationships are not based
on inherent properties of the data themselves, but rather based
on co- occurrence of the data items. Association rules are used
to discover the relationships, and potential associations,
of items or attributes among huge data. These rules can be
effective in uncovering unknown relationships, providing

results that can be the basis of forecast and decision. They have
proven to be very useful tools for an enterprise as it strives to
improve its competitiveness and prosperity. Association rule
mining (ARM) in relational database management systems
generally transforms the database into (TID, item) format,
where TID stands for a unique transaction identifier and
item stands for different items purchased by the customers.
There will be multiple entries for a given transaction ID,
because one transaction ID indicates purchase of one
particular customer and a customer can purchase as many
items as he/ she want. Any association rule will hold if its
support and confidence are equal to or greater than the user
specified minimum support (S) and confidence (C). The
final step involves generating strong rules having a minimum
confidence from the frequent itemsets. It also includes
generating and testing the confidence of all rules.

II. background

The literature review is done to get an insight of the
association rule mining algorithms in data mining. It is
necessary to identify various methodologies that could
possibly used to identify the relationships among itemsets of
various transactions in database. The objective of this portion
of literature review is to identify the existing association rule
mining techniques..

A. Basic Concepts & Basic Association Rules Algorithms

Let I=I1, I2, … , Im be a set of m distinct attributes, T be
transaction that contains a set of items such that T ⊆ I, D
be a database with different transaction records Ts. An
association rule is an implication in the form of X⊆Y, where
X, Y ⊂ I are sets of items called itemsets, and X ∩ Y =∅.
X is called antecedent while Y is called consequent, the rule
means X implies Y. There are two important basic measures
for association rules, support(s) and confidence(c). Since the
database is large and users concern about only those frequently
purchased items, usually thresholds of support and confidence
are predefined by users to drop those rules that are not so
interesting or useful. The two thresholds are called minimal
support and minimal confidence respectively. Support(s) of
an association rule is defined as the percentage/fraction of
records that contain X ∪ Y to the total number of records
in the database. Suppose the support of an item is 0.1%, it
means only 0.1 percent of the transaction contain purchasing
of this item. Confidence of an association rule is defined as
the percentage/fraction of the number of transactions that
contain X ∪ Y to the total number of records that contain X.

Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.1 No.1, 2012, pp.47-52

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2012.1.1.1671

Confidence is a measure of strength of the association rules,
suppose the confidence of the association rule X⇒Y is 80%, it
means that 80% of the transactions that contain X also contain
Y together. In general, a set of items (such as the antecedent or
the consequent of a rule) is called an itemset. The number of
items in an itemset is called the length of an itemset. Itemsets
of some length k are referred to as k-itemsets.

Generally, an association rules mining algorithm contains the
following steps:
• The set of candidate k-itemsets is generated by

1-extensions of the large (k -1)-itemsets generated in the
previous iteration.

• Supports for the candidate k-itemsets are generated by a
pass over the database.

• Itemsets that do not have the minimum support are
discarded and the remaining itemsets are called large
k-itemsets.

This process is repeated until no more large itemsets are
found.

1) Apriori Algorithm

Apriori is a classic algorithm of association rule mining.
Apriori is designed to operate on large database containing
transactions (for example, collections of items bought by
customers, or details of a website frequentation). As is
common in association rule mining, given a set of itemsets (for
instance, sets of retail transactions, each listing individual
items purchased), the algorithm attempts to find subsets which
are common to at least a minimum number C of the itemsets.
Apriori uses a “bottom up” approach, where frequent subsets
are extended one item at a time (a step known as candidate
generation), and groups of candidates are tested against the
data. The algorithm terminates when no further successful
extensions are found.

Apriori is more efficient during the candidate generation
process [3]. Apriori uses pruning techniques to avoid
measuring certain itemsets, while guaranteeing completeness.
These are the itemsets that the algorithm can prove will not
turn out to be large. However there are two bottlenecks of the
Apriori algorithm. One is the complex candidate generation
process that uses most of the time, space and memory.
Another bottleneck is the multiple scan of the database. Based
on Apriori algorithm, many new algorithms were designed
with some modifications or improvements.

2) FP-Tree

Han et. al.[4] proposed a novel frequent pattern tree (FP-
tree) structure, which is an extended prefix-tree structure
for storing compressed, crucial information about frequent
patterns, and developed an efficient FP-tree based mining
method. It is another milestone in the development of
association rule mining, which breaks the main bottlenecks

of the Apriori. The frequent itemsets are generated with only
two passes over the database and without any candidate
generation process. FP-tree is an extended prefix-tree
structure storing crucial, quantitative information about
frequent patterns. Only frequent length-1 items will have
nodes in the tree, and the tree nodes are arranged in such a
way that more frequently occurring nodes will have better
chances of sharing nodes than less frequently occurring nodes
will have better chances of sharing nodes than less frequently
occurring ones. FP-Tree scales much better than Apriori
because as the support threshold goes down, the number as
well as the length of frequent itemsets increase dramatically.
The candidate sets that Apriori must handle become extremely
large, and the pattern matching with a lot of candidates by
searching through the transactions becomes very expensive.
The frequent patterns generation process includes two sub
processes: constructing the FT-Tree, and generating frequent
patterns from the FP-Tree. The mining result is the same with
Apriori series algorithms. To sum up, the efficiency of FP-
Tree algorithm account for three reasons. First the FP-Tree is
a compressed representation of the original database because
only those frequent items are used to construct the tree, other
irrelevant information are pruned. Secondly this algorithm
only scans the database twice. Thirdly, FP-Tree uses a divide
and conquer method that considerably reduced the size of the
subsequent conditional FP-Tree.

Every algorithm has his limitations, for FP-Tree it is difficult
to be used in an interactive mining system. During the
interactive mining process, users may change he threshold
of support according to the rules. However for FP-Tree the
changing of support may lead to repetition of the whole
mining process. Another limitation is that FP-Tree is that it
is not suitable for incremental mining. Since as time goes on
databases keep changing, new datasets may be inserted into
the database, those insertions may also lead to a repetition of
the whole process if we employ FP-Tree algorithm.

3) Cluster Based Association Rule Mining

Tsay and Chiang proposed an efficient cluster based
association rule mining method (CBAR)[7] for discovering
the large itemsets. The CBAR method create cluster tables
by scanning the database once, and then clustering the
transaction records to the k-th cluster table, where the length
of a record is k. Moreover, the large itemsets are generated
by contrasts with the partial cluster tables. This method not
only prunes considerable amounts of data reducing the time
needed to perform data scans and requiring less contrast, but
also ensures the correctness of the mined results.

4) Cluster Based Association Rule (CBAR)

The performance is dramatically decreased in the process of
many association rule algorithms. This is due to the fact that
a database is repeatedly scanned to contrast each candidate
itemset with the whole database level by level in the process

AJCST Vol.1 No.1 January - June 2012 48

Seema Desai, Lata Ragha and Vimla Jethani

GCARM: A Combined Approach to Data Mining

AJCST Vol.1 No.1 January - June 201249

of mining association rules. If an alternative method can
decrease the number of database scans, and reduce the
number of contrasts, efficiency will be improved. Thus we
propose an efficient CBAR method for discovering the large
itemsets, and the main characteristics are the following.
CBAR only requires a single scan of the transaction database,
followed by contrasts with the partial cluster tables. This not
only prunes considerable amounts of data reducing the time
needed to perform data scans and requiring less contrast, but
also ensures the correctness of the mined results.

III. ProPosed method

This chapter sets out the methodology adopted for the project
study. Through the study of literature survey has identified
different association rule mining techniques still there is
a need to find the time efficient method to mine strong
association rules from large database. The proposed method
to find relationship among itemsets scans the database once
to construct an association graph and then traverses the
graph to generate all large itemsets. In the clustering
step, each transaction is clustered to the k-th cluster, where
the length of a transaction is k. Meanwhile, a clustering
table is built to count the occurrences of each item in each
cluster, subsequently the clustering- table will be used in the
candidate generation.

The proposed algorithm (GCARM) has two main advantages:
one is the reduction of the database scans and the other is
the elimination of candidate k-itemsets of order 3 and above.
Figure 3.1 presents an overview of GCARM algorithm steps
where tj is jth transaction and M is total no of transactions.

A. Algorithm

 The algorithm scans the database once to build a graph of
items and a clustering-table. This scan is enough to find
frequent 1-itemsets and frequent 2-itemsets. There is no
need to generate candidate 2-itemsets and hence no need to
scan the database to discover frequent 2-itemsets. After that,
GCARM works iteratively starting from frequent 2-itemsets
(F2) in the sense that frequent itemsets that are discovered in
one iteration will be used as the basis to generate candidate
itemsets in the next iteration. As will be described later, the
candidate generation step is similar to that in the Apriori
algorithm but here we employ clustering technique to
eliminate some infrequent candidate itemsets.

The Build-Graph algorithm build a complete undirected
graph G = (V, E) using all transaction in the database.
Initially, the graph G is the subgraph of the first transaction.
For each transaction t in the database, the algorithm build a
complete undirected subgraph Gt = (Vt, Et), where Vt is
the set of all items in t and Et is the set of all edges between
every 2- subset itemsets in t. A counter is associated with each
vertex or edge that stores the occurrences of that vertex or
edge and is initialized to 1. After building the subgraph Gt,

a new version of graph G is created by merging G and Gt. If
there are any similar vertices and edges between Gt and G,
their counters are summed up.
GCARM(int minsup)
G ← ∅
C1 = {set of all items}
for all transactions t ∈ D do
 Build_Graph(G, t);
Create_Cluster(t, length(t));
 Parse_Graph(G);
for (k = 3; Ck ≠ ∅; k++) do
 For every itemset P ∈ Ck do
 Wp = Calculate_weight(P,k)
 If Wp > minsup then
 Add P to Fk
 If Fk ≠ ∅ then
 Ck+1 ← Fk U Fk
// Union Fk with Fk to generate ck+1, Ck+2,….
Build-Graph(graph G, transaction t)
for each item i ∈ t do
V[G] = V[G] U {i}
 Count[i] = 1;
for each 2-subset itemset e ∈ t do
 E[G]← E[G] ∪ {e}
 Count[e] = 1;
if (there are similar ertices and edges)
 Merge(vertices and edges);

In the clustering step, each transaction is clustered to the
k-th cluster, where the length of a transaction is k. Cluster
the transaction records by length and store each transaction
record into the cluster table.
Create_Cluster(transaction t, int n)
// Add entry in the cluster table(n)
 for each item i ∈ t do
 Cluster-table[i][n]=1;

The function Parse_Graph searches the graph to find
frequent 1- itemsets and Candidate 2-itemsets. The function
Parse_Graph traverses each vertex and edge in the graph, if
the counter of a vertex is greater than or equal the minimum
support then the corresponding item is inserted into the set
of frequent 1-itemsets (F1) and all the edges in the graph
represents association between 2 items which gives candidate
itemset (C2)

 Parse_Graph(graph G)
 for each vertex v ∈ V[G] do
 If (count[v] ≥ minsup) then
 F1 ← F1 ∪{v};
 for each edge e ∈ E[G]do
 C2 ← C2 ∪{e};

Now algorithm parses each candidate itmesets and calcaulates
weight (Wp) of each itemset P. Association between two items
considering Wp can also be represented in a matrix format as
shown in figure 3.5. If this weight Wp is more than minimum

support then we add this itemset (P) to frequent itemset (Fk).
Then we perform Union operation on Fk with Fk to generate
candidate itemset Ck+1 and so on. The algorithm repeated
until Ck results empty.

Calculate_weight(P,k)
Count(P)= Get count of occurrence of
 P from Cluster_table
// For k=2, this is count of edge from graph
Fot each subset item S P do
 Psum = 0
// Get count of individual items and add it
Psum = Count[occurance(S1)
 OR occurance(S2)… OR occurance(P)
 Wp = Count(P) / Psum
 Return Wp

Once the frequent itemsets have been found, generating
interesting association rules is a straightforward step.
Interesting association rules are the ones that satisfy the
minimum support and the minimum confidence. Figure
shows the algorithm for association rules generation

Generate-Rule(float minconf)
for all frequent itemset f do
for all nonempty subset s of f do
If (support(s)/support(f) > minconf) then
 Add “s → (f-s)” to the set of rules

B. An Example
We provide an example to further explain the application of
proposed algorithm. There are 20 transactions in the database.
An example transaction database is shown in Table 1.
Part 1 of the algorithm scans the database once to build a
graph of items and a clustering-table. This scan is enough to
find frequent 1-itemsets and Candidate 2-itemsets

table I transactIon database

TID ITEMS TID ITEMS
T1 A,B,C T11 A,B,C
T2 B T12 C,E
T3 A,E T13 B,C,D,E
T4 A,C,D,E T14 C,D
T5 A,C T15 B,C,D
T6 A,C,E T16 A,D,E
T7 C T17 B,C
T8 B,C,E T18 E
T9 A,B,C,D T19 A,C,D
T10 D T20 A,B,C,D

Figure 3.2 shows sub graphs for three transactions. After
all transactions have been read, the graph is built. Vertices’
counters hold the supports of the corresponding items.
Edge’s counters on the other hand hold the supports of the
corresponding 2-subset itemsets.

For every transaction the subgraph will be drawn as shown,

A

B

C

T1{A,B,C}

B

T2{A}

A E

 T3{A,E}

Fig. 3.2 Subgraph

Similarly for all transactions subgraphs will be drawn and all
subgraphs will be merged to get the final graph G as shown
in Figure 3.3.

D9

5
5
5
5

5

3
7

 4

5

4

8
8

2

B9

E8

C15

A1

0

4

Fig. 3.3 Final graph G

For above example based on the built graph, cluster table can
be formed as shown in table 2. Cluster the transaction records
by length and store each transaction record into the cluster
table. Using Boolean annotation to denote the appearance and
disappearance of each item.

There are four cluster tables, named Cluster_Table(k),where
1 ≤ k ≥ 4. For above example the cluster table is formed as
shown in table 2

AJCST Vol.1 No.1 January - June 2012 50

Seema Desai, Lata Ragha and Vimla Jethani

GCARM: A Combined Approach to Data Mining

AJCST Vol.1 No.1 January - June 201251

table: II cluster table

Itm Cluster-1 Cluster-2
A 0 0 0 0 1 1 0 0 0
B 1 0 0 0 0 0 0 0 1
C 0 1 0 0 0 1 1 1 1
D 0 0 1 0 0 0 0 1 0
E 0 0 0 1 1 0 1 0 0

Itm Cluster-3 Cluster-4
A 1 1 0 1 0 1 1 1 1 1
B 1 0 1 1 1 0 0 0 1 1 1
C 1 1 1 1 1 0 1 1 1 1 1
D 0 0 0 0 1 1 1 1 1 1 1
E 0 1 1 0 0 1 0 1 0 1 0

The function Parse_Graph searches the graph to find frequent
1-itemsets and Candidate 2-itemsets. For given example
following metrics is presented which gives edge count to find
candidate-2 itemset.

table: III metrIcs

Items A B C D E
A 0 4 8 5 4
B 4 0 8 4 2
C 8 8 0 7 5
D 5 4 7 0 3
E 4 2 5 3 0

Function Calculate_Weight computes weight of each itemset
of Ck in order to find frequent-2 itemset. To calculate weight
between two items i and j of individual itemset following
method is used in the proposed algorithm.

Wp= Count of Occurrence of items (i, j) / Count of
occurrence of (i) OR Count of occurrence of (j) OR Count
of occurrence of (i , j)

Now to find frequent-2 itemset the appropriate support is
considered and for that the association value indicated in
above matrix is re-calculated to get strong frequent-2 itemset.

table: Iv modIfIed metrIc

Items A B C D E
A 0 26% 47% 35% 28%
B 26% 0 50% 28% 13%
C 47% 50% 0 41% 27%
D 35% 28% 41% 0 21%
E 28% 13% 27% 21% 0

Candidate-2 itemset for above example will be {AB,AC,AD,
AE,BC,BD,BE,CD,CD,DE}. Considering minimum support
as 30% and based on above matrix frequent-2 itemset will be

resulted as {AC,AD,BC,CD}. After joining above frequent-2
itemset (F2) with (F2) we get candidate-3 itemset as below
{ACD,ABC,BCD}.
In order to generate frequent-3 itemset, it is necessary to
compute the number of occurrence of each candidate in the
cluster table(3). Again the entire cluster table is scanned to
find the number of occurrence of every item of every subset of
candidate itemset. Consider the min support as 20%, for given
example freguent-3 itemset (F3) is {ACD, ABC, BCD}.
Generate the Candidate-4 itemsets (C4) by combining the
items of F3 in order to generate candidate 4-itemsets that are
labeled C4. The itemset of C4 is {A,B,C,D}. The minimum
support (MinSup) is specified as 15%. The candidate itemset
{A,B,C,D} occurs only twice in the Cluster_Table(4) therefore
its support is 10%, less than the minimum support 15%. So
F4=NULL, and so is C5 and the algorithm terminates.
Once the frequent itemsets have been found, generating
interesting association rules is a straightforward step.
Interesting association rules are the ones that satisfy the
minimum support and the minimum confidence. Figure
shows the algorithm for association rules generation.
Once the frequent itemsets have been found, generating
interesting association rules is a straightforward step.
Interesting association rules are the ones that satisfy the
minimum support and the minimum confidence. Figure
shows the algorithm for association rules generation.
For given example for frequent item subset {ACD}
associations rules will be generated by given algorithm are
as follows,

R1:A^C→D ACD/AC 4/8 50%
R2:A^D→C ACD/AD 4/5 80%
R3:C^D→A ACD/CD 4/7 57%
R4:A→C^D ACD/A 4/10 40%
R5: C→A^D ACD/C 4/15 26%
R6:D→A^C ACD/D 4/9 44%
From above results it is clear that rule R2 is strongest among
all which means that whenever items A and D has been
purchased maximum times item C has also been purchased.
Similarly for remaining frequent itemset the association can
be found.
In this way the strong association rules can be generated
efficiently to discover customer behaviors such that the
quality of business decision can be improved.

Iv. conclusIon

From the literature review, it is clear that there are many
association rule mining techniques are available and they
are still evolving to get faster and accurate results. Every
technique is an improvement over other but the only drawback
of existing methods are they take more time to scan the huge
database again and again. The only intention behind this study

is to find the efficient technique to mine strong association rule
among the itemsets of large database in short span of time.
This research contributes to enhancing knowledge discovery
techniques used in data mining. This research involves an
empirical examination of the data set which will be worked
upon. The study makes some contributions to the literature on
various rule mining methods and its efficiency and accuracy
in the area of data mining.

references

[1] Wael Ahmad AlZoubi,Khairuddin Omar, Azuraliza Abu Bakar, An
Efficient Mining of Transactional data using Graph Based Technique.
IEEE, 3rd Conference on Data Mining and Optimization(DMO), 28-
29 June 2011, Selangor, Malaysia

[2] Agrawal, R., Imielinski, T., and Swami, A. N. 1993. Mining association
rules between sets of items in large databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of
Data, 207-216.

[3] Agrawal, R. Srikant, Fast algorithm for mining association rules in
large databases, Proceedings of 1994 International Conference on
VLDB, 1994 pp. 487–499.

[4] Jiawei Han , Jian Pei , Yiwen Yin , Runying Mao. Mining Frequent
Patternswithout Candidate Generation: A Frequent-Pattern Tree
Approach. Data Mining and Knowledge Discovery, 8, 53–87, 2004.

[5] Vijender Singh, Deepak Garg, Survey of Finding Frequent Patterns
in Graph Mining: Algorithms and Techniques, International Journal
of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307,
Volume-1, Issue-3, July 2011

[6] Deepayan Chakrabarti And Christos Faloutsos, Graph Mining: Laws,
Generators, and Algorithms, ACM Computing Surveys, Vol. 38, March
2006, Article 2

[7] Yuh-Jiuan Tsay, Jiunn-Yann Chiang. CBAR: an efficient method for
mining association rules. Knowledge-Based Systems 18 (2005) 99–
105.

[8] Michael Hahsler Bettina Grün Kurt Hornik. Introduction to arules - A
computational environment for mining association rules and frequent
item sets. Journal of Statistical Software. October 2005, Volume 14,
Issue

AJCST Vol.1 No.1 January - June 2012 52

Seema Desai, Lata Ragha and Vimla Jethani

