
AJCST Vol.1 No.1 January - June 201243

RDACIA: Runtime Defence Against Code Injection Attack
Using N-Variant Approach
K.A. Sheik Mydeen and V. Bala Murugan

Department of Computer Science and Engineering, Mohamed Sathak Engineering College, Kilakkarai, Tamil Nadu, India
E-mail: mydeen.kas@gmail.com

Abstract - Software vulnerabilities have been a major threat for
decades. Security vulnerabilities in software permit attackers
to compromise and misuse computer systems for various
malicious purposes. Intrusion detection systems have an
important role in detecting and disrupting attacks before they
can compromise software. Multi- variant execution is
an intrusion detection mechanism that executes several
slightly different versions or variants of the same program
in lockstep. The variants are built to have identical behavior
under	 	 	normal	 	 	 	execution	 	 	conditions.	However,	 	when	 	 the			
variants are under attack, there are detectable differences in
their execution behavior. At run time, a monitor compares
the behavior of the variants at certain synchronization points
and raises an alarm when a discrepancy is detected. We present
a monitoring mechanism that does not need any kernel privileges
to supervise the variants. As a result, the monitor runs entirely
in user space. Our experiments show that the multi-variant
execution	technique	is	effective	in	detecting	and	preventing	code	
injection attacks.

Keywords – Code injection attack, malicious attack, n-variant
execution, multi-variant execution, software fault tolerant

I. IntroductIon

Code injection is the general name for a lot of types of attacks
which depend on inserting code, which is interpreted by the
application. Such an attack may be performed by adding
strings of characters into a cookie or an argument values in
the URI. The concept of Code injection is to add malicious
code into an application which then will be executed. Added
code is a part of the application itself. It is not external code
which is executed as like he command injection. Intrusion
detection systems play an important role in detecting and
disrupting attacks before they can compromise software
applications. Multi-variant execution is an intrusion detection
mechanism that executes several slightly different versions
called variants of the same program in lock step. We provide
reasons why certain types of applications suffer from higher
performance degradation in a multi variant environment.

A. Problem Definition
Multi-variant code execution is a run-time monitoring
technique that prevents malicious code execution and
addresses the problems mentioned above. Vulnerabilities that
allow the injection of malicious code are among the most
dangerous forms of security flaws since they allow attackers to
gain complete control over the targeted system. Multi- variant
execution protects against malicious code execution attacks

by running two or more slightly different variants of the same
program in lock step. At certain synchronization points, their
behavior is compared against each other. Divergence among
the behavior of the variants is an indication of an anomaly
in the system and raises an alarm. An obvious drawback
of multi-variant execution is the extra processing overhead,
since at lease two variants of the same program must be
executed in lockstep to provide the benefits mentioned above.
Our experimental results show that extra computational
overhead imposed by multi-variant execution is in the
range afforded by most security sensitive applications where
performance is not the first priority, such as government and
banking software. Our proposed architecture allows running
conventional applications without engaging the MVEE (see
Fig. 1).

Fig.1 The proposed architecture

Thus, normal applications may run conventionally on he
system and in parallel with security sensitive applications
which are executed on top of the MVEE.

II. module ImPlementatIon

One of the most common forms of security attacks involves
exploiting a vulnerability to inject malicious code into an
executing application and then cause the injected code to
be executed. Adaptive software has attracted much research
interest in recent years. Two key features of adaptive software
are (1) the ability to monitor its own execution and (2) the
ability to reconfigure itself based on the result of runtime
monitoring. Self adaptation is essential to improve system
survivability for a range of applications from safety critical
embedded software to mission-critical web services that
shall be resilient to malicious attacks

A. Multi Variant Code Executions
It is a runtime monitoring technique that prevents system
damage resulting from malicious code execution and address

Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.1 No.1, 2012, pp.43-46

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2012.1.1.1672

the above problems with dynamic detection tools. Multi-
variant execution protects against malicious code execution
attacks by running two or more slightly different versions
of the same program, called variants in the lock step. At
defined synchronization points, the variants’ behavior is
compared against each other. Divergence among the behavior
is an indication of an anomaly and raises an alarm. Unlike
many previously proposed techniques to prevent malicious
code execution that use random and/or secret keys in order
to prevent attacks, a multi-variant execution is a secret-
less system. It is designed on the assumption that program
variants have identical behavior under normal execution
conditions but their behavior differs under abnormal
conditions. Therefore the choice is what to vary defines which
class of attacks can be stopped and which vulnerabilities
still can be exploited (False negatives). It is important that
every variant be fed identical copies of each input from the
system simultaneously. This design makes it difficult for
an attacker to send individual malicious inputs to different
variants and compromise them one at a time. If the variants
are chosen properly, a malicious input to one variant causes
collateral damage in some of the other variants, causing them
deviate from each other. The deviation is then detected by a
monitoring agent that enforces a security policy and raises an
alarm.

B. Multi-Variant Monitor

Multi-variant execution is a monitoring mechanism that
controls states of the variants being executed and verifies
that the variants are complying with the earned rules. A
monitoring agent, or monitor, is responsible for performing
the checks and ensuring that no program instance has been
corrupted. This can be achieved at varying granularities,
ranging from a coarse-grained approach that only checks
that the final output of each variant is identical all the way
to a potentially hardware-assisted check pointing mechanism
that compares each executed instruction to ensure that the
variants execute semantically equivalent instructions in
lockstep. The granularity of monitoring does not impact what
can be detected, but it determines how soon an attack can be
caught. We use a monitoring technique that synchronizes
program instances at the granularity of system calls. Our
rational for using this granularity is that the semantics of
modern operating systems prevents processes from having
any outside effect unless they invoke a system call. Thus,
injected malicious code cannot damage the system without
invoking a system call. Moreover, coarse-grained monitoring
has lower overhead compared to fine-grained monitoring, as
it reduces the number of comparisons and synchronization
points. As mentioned before, our monitor runs completely
in user-space. The monitor is a process invoked by a user
and receives the paths of the executables that must be run as
variants. The monitor creates one child process per variant
and starts executing them. It allows the variants to run without
interruption as long as they do not require data or resources

outside of their process spaces. Whenever a variant issues a
system call, the request is intercepted by the monitor and the
variant is suspended. The monitor then attempts to synchronize
the system call with the other variants. All variants need to
make the exact same system call with equivalent arguments
within a small time window. The invocation of a system
call is called a synchronization point in our technique. Note
that argument equivalence does not necessarily mean that
argument values are identical. When an argument is a pointer
to a buffer, the contents of the buffers are compared and the
monitor expects them to be the same, whereas the pointers
themselves can be different. Non-pointer arguments are
considered equivalent only when they are identical.

C. System Call Execution

A multi-variant environment and all the variants executed
in this system must act as any one of the variants running
conventionally on the host operating system. The monitor
is responsible for providing this characteristic by running
certain system calls on behalf of the variants and providing
the variants with the results.

We have examined the system calls of the host operating
system one by one and considered types and the number of
possible arguments that can be passed to them. Depending
on the effects of these system calls and their results, we have
specified which ones can be executed by the variants and
which ones should be run by the monitor. The decision as
to who should run the system calls has generally been made
based on the following parameters:

• System calls that change the state of the system are
executed by the monitor and the results are copied to
the variants. For example, a system call that creates a file
on the system must be executed once by the monitor
and the variants should not be allowed to run it.

• Non-state changing system calls that return non-
immutable results must also be executed by the monitor,
and the variants must receive identical results of the
system call. For example, reading the system time
(gettimeofday) must be performed by the monitor and
the variants only receive the results. This is necessary to
keep the variants in conforming states in the course of
execution and preventing false- positives.

• Non-state changing system calls that produce
immutable results allowed to be executed by the variants.
For example, uname that returns information about the
operating system is executed by all the variants.

These are general rules for system call execution, but running
system calls are more complicated in practice and the decision
as to who should run a system call sometimes need more
investigations.

AJCST Vol.1 No.1 January - June 2012 44

K.A. Sheik Mydeen and V. Bala Murugan

RDACIA: Runtime Defence Against Code Injection Attack Using N-Variant Approach

AJCST Vol.1 No.1 January - June 201245

III. InconsIstencIes and non- determInIsm

Internal conditions and behavior of the system that runs
the variants, as well as system events, can cause divergence
in behavior of the variants. These divergences cause
the monitor to raise false alarms and interrupt execution
of the variants. There are several sources of inconsistencies
among the variants that can cause false positives in multi-
variant execution. Scheduling of child processes and threads,
asynchronous signals, file descriptors, process IDs, time, and
random numbers must be handled properly to prevent false
positives.

A. Scheduling
Scheduling of child processes or threads created by the
variants can cause the monitor to observe different
sequences of system calls and raise a false alarm. To prevent
this situation, corresponding variants must be synchronized
to each other. In a multi-threaded monitor, any monitoring
thread may receive signals or events encountered in any
traced process. This means that a monitoring thread can
receive signals raised for the processes monitored by other
monitoring threads. We use wait4 to tackle this problem.
wait4 allows a monitoring thread to wait for a specific process
whose PID is passed to wait4. Using this wait function, a
monitoring thread receives notifications of signals or system
calls only for the processes under its supervision.

B. Synchronous Signal Delivery
Handling asynchronous signals is one of the major challenges
in multi-variant execution, as it can cause the variants to
execute different sequences of system calls. This behavior
is detected as a discrepancy and raises a false alarm in
the system. For example, assume variant p1 receives a signal
and starts executing its signal handler. p1’s signal handler
then invokes system call s1, causing the monitor to wait for
the same system call from p2. Meanwhile, variant p2 has
not received the signal and is still running its main program
code. When p2 calls system call s2, the monitor detects the
difference between s1 and s2 and raises an alarm. This scenario
is depicted in Fig.2 .

Fig.2 Asynchronous signals could cause the monitor to observe different
sequences of system calls and raise a false alarm.

A possible solution is to deliver signals synchronously at
synchronization points, which are in fact the same as system
calls. The problem with this approach, however, is that CPU-

intensive applications may not invoke any system call for
a long period of time during the execution. This could cause
some signals to be delivered with a long delay which might
not be acceptable for certain types of signals, such as timer
signals. We present a solution to the problem of asynchronous
signal delivery which removes false positives caused by
asynchronous signals and is not based on delivering signals at
system calls. The variants are monitored after each system
call and the following rules are applied to them:
• If all the variants are paused as a result of receiving a

signal and none of them invokes any system call before
receiving the signal, the signal is delivered to all the
variants.

• If at least half of the variants receive a signal, but the
rest invoke a system call, the monitor makes the latter
variants skip the system call and forces them to wait for
the signal. The monitor then delivers the signal to all the
variants and restores the system call in those variants that
have been made to skip it. The variants that are forced to
wait for a signal and do not receive it within a configurable
amount of time are considered as non-complying.

• If fewer than half of the variants receive a signal and the
rest invoke a system call, the signal is ignored and the
variants which are stopped by the signal are resumed. The
monitor keeps a list of pending signals for each variant. All
received signals are added to these lists by the monitor. As
more variants receive the signal, the monitor checks the
lists and then half of the variants have received the signal,
the signal is delivered using the method mentioned in the
above rule.

Iv. ImPlementatIon

To demonstrate the effectiveness of the multi-variant execution
environment, we create a customized test suite which includes
common benchmarks and frequently used applications. This
suite allows us to evaluate the security claims and assess the
computational tradeoff in CPU- and I/O- bound operations.

Fig.3 Multi-variant monitor during the run-time against code injection attack

One of the key features of our multi-variant execution
technique that distinguishes it from n- version programming

is automated variant generation. The variants of a program
are generated automatically from the same source code
eliminating the need to rewrite the variants manually. This
feature significantly reduces the costs of development
and maintenance of the variants. Running two variants
that grow the stack in opposite directions in a multi-
variant environment helps preventing exploitation of stack-
based buffer overflow vulnerabilities. Buffer overflow
vulnerabilities give the opportunity to remote attackers to
inject and execute malicious code. This phenomenon makes
exploiting of this type of vulnerability appealing and, as a
result, these vulnerabilities are still among the main sources
of exploited software security flaws. The simplest and most
common form of buffer overflow attacks is stack smashing. In
this type of attack, an attacker overwrites the return address
of the currently running function, and causes the program
to jump to a desired location in memory that contains the
injected code, and execute it. Stack smashing is shown in
Fig.4.

Fig. 4 The return address of the current function cannot be overwritten by
exploiting buffer overflow vulnerabilities when the stack grows upward
(right side).

When stack grows downward, an input larger than the
size of the Buffer is given to the program and overwrites
the return address of the current function. On the right side
of this figure, we can see that the same vulnerability cannot
be exploited to overwrite the corresponding return address
on an upward growing stack. Function pointer overwrite
is a similar attack in which vulnerabilities are exploited
to overwrite function pointers rather than return addresses.
When the function whose pointer is overwritten is called,

control is transferred to the overwritten address which usually
contains the malicious code.

v. conclusIon

Multi variant execution is effective even against sophisticated
polymorphic and metamorphic viruses and worms. The
mechanism proposed in this dissertation trusts the operating
system and protects against vulnerabilities in applications and
their libraries.

A major benefit of this approach is that it enables us to
detect and prevent a wide range of threats, including “zero-
day” attacks. The multi-variant execution is an effective
mechanism to thwart viruses, worms, and other exploitation
of vulnerabilities. The technique discussed in this dissertation
targets code injection attacks and is based on detecting “out-
of- specification” behavior. Cross site scripting and SQL
injection attacks constitute a large number of attacks in recent
years. Although attack vectors used in these types of exploits
also cause “out-of-specification” behavior, the vectors are not
illegal inputs. This is in contrast to code injection attacks in
which attack vectors are illegal inputs. Expanding the idea of
multi- variant execution to cover cross site scripting and SQL
injection can thwart a large spectrum of attacks; however the
feasibility of this idea needs further investigation.

references
[1] B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and M. Franz.

(2010) on the effectiveness of multi-variant program execution
for vulnerability detection and prevention. In International
Workshop on Security Measurements and Metrics (MetriSec).

[2] B. Salamat, T. Jackson, A. Gal, and M. Franz. (2009) Orchestra:
Intrusion detection using parallel execution and monitoring of
program variants in user-space. In Proceedings of the European
Conference on Computer Systems, pages 33–46. ACM Press.

[3] B. Salamat, C. Wimmer, and M. Franz. (2009) Synchronous
signal delivery in a multi-variant intrusion detection system.
Technical report, School of Information and Computer Sciences,
University of California, Irvine.

[4] B. Salamat, A. Gal, and M. Franz. (2008) Reverse stack execution
in a multi-variant execution environment. In Workshop on
Compiler and Architectural Techniques for Application Reliability and
Security.

[5] D. Evans, B. Cox, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J.
Knight, A. Nguyen-Tuong, and J. Hiser (2006) “N-Variant Systems:
A Secretless Framework for Security through Diversity,” Proc.
USENIX Security Symp., pp. 105-120.

AJCST Vol.1 No.1 January - June 2012 46

K.A. Sheik Mydeen and V. Bala Murugan

