
Abstract -	 Volumetric	 medical	 image	 data	 usually	 require	 a	
vast amount of resources for storage and transmission. With 
the wide pervasiveness of medical imaging applications in 
healthcare settings and the increased interest in telemedicine 
technologies, it has become essential to reduce both storage and 
transmission	bandwidth	requirements	needed	for	archival	and	
communication of related data, preferably by employing lossless 
compression methods to avoid any negative effects of lossy 
compression	on	 image	quality	and	diagnostic	 capabilities.	The	
main objective is to present a 3-D medical image compression 
method	 with	 scalability	 properties,	 by	 quality	 and	 resolution	
up to lossless reconstruction and optimized Volume of Interest 
(VOI) coding at any bit-rate. The proposed method named 
as “EBCOT with VOI coding” employs a 3-D integer wavelet 
transform	(3D-IWT)	and	a	modified	EBCOT	with	3-D	contexts	
to compress the 3-D medical imaging data into a layered bit-
stream	 that	 is	 scalable	 by	 quality	 and	 resolution.	VOI	 coding	
capabilities are attained after compression by employing a 
bit-stream reordering procedure, which is based on a weight 
assignment model that incorporates the position of the VOI 
and	the	mean	energy	of	the	wavelet	coefficients.	Optimized	VOI	
coding	at	any	bit-rate	is	attained	by	an	optimization	technique	
that	 maximizes	 the	 reconstruction	 quality	 of	 the	 VOI,	 while	
allowing for the decoding of background information with 
peripherally	 increasing	 quality	 around	 the	VOI.	 Performance	
evaluations based on real 3-D medical imaging data showed that 
the	proposed	method	achieves	a	higher	reconstruction	quality,	
in terms of the peak signal-to-noise ratio, than that achieved by 
3D-JPEG2000	 with	VOI	 coding,	 when	 using	 the	MAXSHIFT	
and general scaling-based methods.

Keywords - Embedded block coding with optimized truncation 
(EBCOT), Integer wavelet transform, medical image 
compression, scalable compression, volume of interest coding, 
3D-JPEG2000

I. IntroductIon

Most of the current medical imaging techniques produce 
three-dimensional (3-D) data distributions. Some of them 
are intrinsically volumetric, like magnetic resonance 
(MR), computerized tomography (CT), positron emission 
tomography (PET), and 3-D ultrasound. Such 3-D data 
usually require a vast amount of resources for storage and 
transmission. As the amount of 3D medical images generated 
increases, the storage, management, and access to these large 
repositories is becoming increasingly complex. This also 
requires various bandwidth capabilities for transmission over 
networks.

With the wide pervasiveness of medical imaging applications 
in healthcare settings and the increased interest in 

telemedicine technologies, it has become essential to reduce 
both storage and transmission bandwidth requirements 
needed for archival and communication of related data, 
preferably by employing lossless compression methods. 
Furthermore, providing random access as well as resolution 
and quality scalability to the compressed data has become of 
great utility. Random access refers to the ability to decode any 
section of the compressed image without having to decode 
the entire data set. Resolution and quality scalability, on the 
other hand, refers to the ability to decode the compressed 
image at different resolution and quality levels, respectively. 
The latter is especially important in interactive telemedicine 
applications, where clients (e.g., radiologists or clinicians) 
with limited bandwidth connections using a remote image 
retrieval system may connect to a central server to access a 
specific region of a compressed 3-D data set, i.e., a volume 
of interest (VOI). 

3-D image data can be represented as multiple two-
dimensional (2-D) slices; it is possible to code these 2-D
images independently on a slice-by-slice basis. Several
excellent 2-D lossless compression algorithms, such as lossless
image-compression standard JPEG-LS and the context-based
adaptive lossless image codec (CALIC) algorithm do not
exploit the dependencies that exist among pixel values in all
three dimensions. Because pixels are correlated in all three
dimensions, a better approach is to consider the whole set of
slices as a single 3-D data set. Several methods that utilize
dependencies in all three dimensions have been proposed.
Some of these methods use the 3-D discrete wavelet transform
in a lossy compression scheme, whereas others use predictive
coding in lossless schemes.

Several compression methods for 3-D medical images have 
been proposed in the literature, some of which provide 
resolution and quality scalability up to lossless reconstruction 
[1]–[3]. These methods are based on the discrete wavelet 
transform (DWT), whose inherent properties produce a 
bit-stream that is resolution-scalable. Quality scalability is 
then achieved by employing bit-plane based entropy coding 
algorithms that exploit the dependencies between the location 
and value of the wavelet coefficients, such as the embedded 
zerotree wavelet coding (EZW), the set partitioning in 
hierarchical trees (SPIHT), and the embedded block coding 
with optimized truncation (EBCOT) algorithms [4]–[6]. 
These compression methods, however, do not provide VOI 
decoding capabilities.
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Fig. 1. Block diagram of the proposed scalable lossless compression method

Recently, a number of medical image compression methods 
that support VOI coding have been proposed [8]–[10]. In [8], 
the authors introduced a 3-D medical image compression 
technique that supports VOI coding based on 3-D sub-band 
block hierarchical partitioning (3D-SBHP), a highly scalable 
wavelet transform based entropy coding algorithm. A number 
of parameters that affects the effectiveness of VOI coding 
including the size of the VOI, the number of decomposition 
levels, and the target bit-rate. The authors also discussed an 
approach to optimize VOI decoding by assigning a decoding 
priority to the different wavelet coefficient bit-planes. In [8], 
the authors summarized the features of various methods for 
VOI coding, including the maximum shift (MAXSHIFT) 
and general scaling-based (GSB) methods supported by the 
JPEG2000 standard [11]. These particular methods scale up 
the coefficients associated with a VOI above the background 
coefficients, by a scaling value. In [10], the authors presented 
a VOI coding method for volumetric images based on the 
GSB method and the shape-adaptive wavelet transform. The 
method extends the capabilities of the GSB method to 3-D 
images with arbitrarily-shaped VOIs and allows for coding 
partial background information in conjunction with the VOI.

The main objective of this paper is to present a 3-D medical 
image compression method with 1) scalability properties, by 
quality and resolution up to lossless reconstruction and 2) 
optimized VOI coding at any bit-rate. It is mainly concerned in 
interactive telemedicine applications, where different remote 
clients with limited bandwidth connections may request the 
transmission of different VOIs of the same compressed 3-D 
image stored on a central server. In this work, the VOI is a 
cuboid defined in the spatial domain with possibly different 
values for the length, width and height.

The proposed method is different from the VOI coding 
method proposed in [8], where the background information is 

only decoded after the VOI is fully decoded, which prevents 
observing the position of the VOI within the original 3-D 
image. The proposed method also differs from the method 
in [10], where the scaling value of the VOI coefficients is 
empirically assigned and the shape information of the VOI 
must be encoded and transmitted, which may result in an 
increase in computational complexity as well as bit rate 
(due to shape encoding). The proposed method will achieve 
a higher reconstruction quality, in terms of the peak signal-
to-noise ratio (PSNR), than those achieved by 3D-JPEG2000 
with VOI coding at a variety of bit-rates.

The performance of the proposed method is compared with 
3D-JPEG2000 with VOI coding, using the MAXSHIFT and 
the GSB methods. The proposed method achieves a higher 
reconstruction quality, in terms of the peak signal-to-noise 
ratio (PSNR), than those achieved by the MAXSHIFT and 
GSB methods.

The remainder of the paper is organized as follows. Section 
II describes the proposed compression method. Section III 
presents the experimental results. The concluding remarks 
present in Section IV.

II. ProPosed comPressIon method

The proposed compression method is depicted in Fig. 1. 
First apply a 3D-IWT to an input 3-D medical image. This 
transform maps integers to integers and allows for perfect 
invertibility with finite precision arithmetic, which is required 
for perfect reconstruction of a signal [12]. The same wavelet 
filters are used in all three dimensions to perform separable 
wavelet decomposition. The 2-D spatial transform and 
temporal transform (along image slices) are done separately 
by first performing a 2-D dyadic wavelet decomposition on 
each image slice, and then performing a 1-D wavelet packet 
decomposition along the resulting image slices. Each level 
of decomposition, r, of the transform decomposes the 3-D 
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image input into eight 3-D frequency sub-bands denoted as 
LLLr, LLHr, LHLr, LHHr, HLLr, HLHr, HHLr and HHHr. 
The approximation low-pass sub-band, LLL, is a coarser 
version of the original 3-D image, whereas the other sub-
bands represent the details of the image.

The decomposition is iterated on the approximation low-pass 
sub-band. Its smooth (s) and detail (d) outputs for an index n 
are given in (1) and (2) respectively. Note that the smooth and 
the detail outputs are the results of the application of the high-
pass and the low-pass filters respectively. At the first sight it 
seems that the rounding-off in this definition of s(n) discards 
some information. The IWT is thus reversible and its inverse 
is given in equations (3) and (4).

        (1)

        (2)

        (3)

        (4)

Then the method groups the wavelet coefficients into 3-D 
groups and computes the mean energy of each group. Then 
encode each group of coefficients independently using a 
modified EBCOT with 3-D contexts to create a separate 
scalable layered bit-stream for each group. The coordinates 
of the VOI in the spatial domain, in conjunction with the 
information about the mean energy of the grouped coefficients, 
are then used in a weight assignment model to compute a 
weight for each group of coded wavelet coefficients. These 
weights are used to reorder the output bit- stream and create 
an optimized scalable layered bit-stream with VOI decoding 
capabilities and gradual increase in peripheral quality around 
the VOI. At the decoder side, the wavelet coefficients are 
obtained by applying the EBCOT decoder. Finally, an inverse 
3D-IWT is applied to obtain the reconstructed 3-D image. 

It is important to mention that the proposed method attains 
VOI decoding capabilities after the 3-D medical imaging 
data is coded. This is particularly advantageous in interactive 
telemedicine applications, where different clients may request 
different VOIs of the same compressed 3-D image stored on a 
central server. The server may then transmit different versions 
of the same compressed bit-stream by simply performing the 
bit-stream reordering procedure for each requested VOI, thus 
saving time in recoding the entire 3-D image for each client’s 
request. Note that the bit-stream reordering procedure can 
take place before transmission since the decoder is capable of 
decoding any bit-stream regardless of the order it is transmitted 
(due to the fact that code-cubes are encoded independently). 
Alternatively, the bit-stream reordering procedure may also 
be performed at the client side once the image has been fully 
transmitted. 

There are three key techniques in the proposed compression 
method. The first is the modified EBCOT. The second is 

the weight assignment model. The last is the creation of an 
optimized scalable layered bit-stream.

A. Modified EBCOT

EBCOT is an entropy coding algorithm for 2-D wavelet 
transformed images, which generates a bit-stream that is both 
resolution and quality scalable [9]. EBCOT partitions each 
sub-band in small group of samples, called code-blocks, 
and generates a separate scalable layered bit-stream for each 
code-block. The algorithm is based on context adaptive binary 
arithmetic coding and bit-plane coding, and employs four 
coding passes to code new information for a single sample 
in the current bit-plane. The coding passes are 1) zero coding 
(ZC), 2) run-length coding (RLC), 3) sign coding (SC), and 
4) magnitude refinement (MR). A combination of the ZC 
and RLC passes encodes whether or not sample becomes 
significant in the current bit-plane. A sample is said to be 
significant in the current bit-plane if and only if  

p. If 
sample C becomes significant in the current bit-plane, the SC 
pass encodes the sign information of sample. The MR pass 
encodes the value of sample C only if it is already significant 
in the current bit-plane p.

EBCOT encode the wavelet coefficients on a slice-by-
slice basis. However, in our compression method, the 
input samples to the entropy coding algorithm are 3D-IWT 
wavelet coefficients rather than 2D-IWT wavelet coefficients. 
Therefore, coding 3D-IWT wavelet coefficients on a slice-by-
slice basis makes EBCOT less efficient since the correlation 
between coefficients is not exploited in three dimensions. 
Consequently, a modified EBCOT algorithm is needed to 
overcome this problem, which solve by partitioning each 
3-D sub-band into small 3-D groups of samples (i.e., wavelet 
coefficients), which is called as code-cubes, and coding each 
code-cube independently by using a modified EBCOT with 
3-D contexts.

In this work, code-cubes are comprised of a×a×a samples 
and describe a specific region of the 3-D image at a specific 
decomposition level. In this approach, a code-cube of size 
a×a×a samples and position   at decomposition level 
is related to a code-cube of size   samples 
and position   at decomposition level r+1, where  r=1 
is the first decomposition level. Fig. 2 shows the 3D-IWT 
sub-bands of a 3-D image after two levels of decomposition 
in all three dimensions with a single code-cube in sub-bands 
HHH2and HHH1. It is possible to access any region of the 
3-D image at any resolution, which is essential for VOI 
coding. In this work, limit the code-cube dimension, a, to be 
a power of 2, with a≥23.

The proposed method encodes each code-cube independently 
using a modified EBCOT with 3-D contexts that exploit inter-
slice correlations. Coding wavelet coefficients by extending 
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2-D context modeling to 3-D has been extensively used to 
improve coding efficiency [1], [2], [14], [15]. 

Fig. 2. 3D-IWT sub-bands of a 3-D image after two levels of decomposition 
in all three dimensions with a single code-cube in sub-bands HHH1 and 
HHH2

Fig. 3 The immediate horizontal, vertical, diagonal and temporal neighbors 
of sample C located in slices z, slices z-1 and z+1.

The method propose a 3-D context model, based on the 
four coding passes previously discussed, that incorporates 
information from the immediate horizontal, vertical, diagonal 
and temporal neighbors of sample located in slices z, z-1 and 
z+1, as illustrated in Fig. 3.

During the ZC pass, code whether or not sample c becomes 
significant in the current bit-plane p. The significance of 
sample c is highly dependent upon the value of its immediate 
horizontal, vertical and diagonal neighbors. Here, in order to 
exploit interslice correlations, it also employs the information 
about the significance of the immediate temporal neighbors to 
code the significance of sample c.

For the SC pass, we expect that the sign information of sample 
exhibit some correlation with that of its temporal neighbors, 
in addition to the correlation exhibited with its vertical and 
horizontal neighbors. Therefore, in this pass, it employs the 
sign and significance information of the temporal, vertical and 
horizontal neighbors to code the sign information of sample c. 

For the MR pass, we also expect that the magnitude of sample 
c exhibit some correlation with the magnitude of its immediate 

temporal neighbors. We thus employ the significance 
information of the immediate temporal neighbors, in addition 
to the significance information of the immediate horizontal 
and vertical neighbors, to code the magnitude of sample c.

B. Weight Assignment Model

The purpose of the weight assignment model is to enable the 
encoder to reorder the output bit-stream, so that the code-cubes 
that constitute the VOI are included earlier while allowing 
for gradual increase in peripheral quality around the VOI, 
under the constraint that the VOI is the main focal point. In 
the proposed compression method, we apply this technique to 
decode contextual background information with peripherally 
increasing quality around the VOI, which in turn enhances 
the visualization of the data at any bit-rate. We achieve this 
by considering two main factors: 1) the proximity of a code-
cube to the VOI and 2) the mean energy of a code-cube. The 
desired weight assignment for code-cube   is a function of 
the form

                  (5

where  is a value in the range [0,1] that depends on the 
proximity between the center of code-cube  and the center 

of the VOI,  is a value in the range [0,1] that depends 

on the mean energy of code-cube , and  is a value in 
the range [0,1] that depends on the proportion of wavelet 
coefficients of code-cube  that contributes to the VOI.The 
main objective is to assign the largest weight to those code-
cubes within the VOI, a smaller weight to those code-cubes 
within the non-empty background, and the smallest weight to 
those code-cubes within the empty background.

We employ as a measure of the proportion of 
wavelet coefficients of code-cube  that contribute to the 

VOI, with  =0 for those code-cubes outside the VOI, 

 for those code-cubes that fully contribute to the 

VOI and   for those code-cubes with some 
contribution to the VOI.

In order to determine which code-cubes constitute the empty 
background, we use the information about their mean energy, 
which for code-cube   is calculated as follows:

                   (6)

where  is the kth sample of , and K is the total number 

of samples in  . We expect the value of   to be zero 
for those code-cubes within the empty background. The 
simplest possible method to determine if a codecube is part 
of the empty background is to use a thresholding approach, 



where  code-cube is considered to constitute the empty 

background if the mean energy  is below a defined value. 
We, thus, use the following simple continuous, monotonically 
decreasing function to determine if code-cube   in sub-
band is part of the empty background

                  
(7)

where   is the maximum mean energy   in 

subband. A value of   close to one means a high probability 
that code-cube   is part of the empty background, 
corresponding to a low mean energy content, whereas a value 

of   close to zero means a low probability that code-cube 
  is part of the empty background, corresponding to a high 

mean energy content. All values   are calculated during 
the encoding process and are stored as header information.

We now define function   to assign 

weight   to code-cube  . We also employ a continuous, 
monotonically decreasing function with a range [0,1] as 
follows:

       (8)

where  is as defined in (7),  is the proportion of 
wavelet coefficients of code-cube  that contributes to the 

VOI, and  is the probability that code-cube   is located 
peripherally close to the VOI and is calculated by

          
(9)

where  is the radial distance between the center of 
the VOI and the center of the region represented by code-

cube      in the spatial domain, and   is the 
maximum radial distance in the spatial domain between two 
samples of the 3-D image, where {x, y, z} denotes the size of 

the 3-D image in the spatial domain. A value of   close to 
one means a high probability that code-cube   is located 
peripherally close to the VOI; whereas a value of close to 
zero means a low probability that code-cube   is located 
peripherally close to the VOI.

Note that after the image is coded, the calculation of the code-
cube weights for any VOI requires only the recomputation 
of two values for each code-cube, 1) its probability of being 

peripherally close to the VOI (i.e., value ), and 2) its 

contribution to the VOI (i.e., value ). There is no need 

to recompute the code-cube probabilities of being within the 

empty background (i.e., values  ), since these probabilities 
are independent of the VOI and are calculated only once 

during the coding process (values   are stored as header 
information).

C. Creation of an Optimized Scalable Layered Bit-Stream

The bit-stream of each code-cube    may be independently 
truncated to any of a collection of different lengths, due 
to the entropy coding process, which is performed using a 
number of coding passes. We organize these truncated bit-
streams into a number of quality layers to create a scalable 
layered bit-stream. This is done by collecting the incremental 
contributions from the various code-cubes into the quality 
layers such that the codecube contributions result in a rate-
distortion optimal representation of the 3-D image, for each 
quality layer L. The code-cube incremental contributions into 
each quality layer are stored as header information during the 
coding process.

In this work, we employ the mean square error (MSE) to 
quantify the distortion of code-cube   at quality layer L

             (10)

where   is the kth sample of  ,  is the quantized 
representation of the kth sample of   associated with the 
truncated bit-stream at quality layer L, and K is the total 
number of samples in  .

The MSE of code-cube   at quality layer L in sub-band s 
on a per-voxel basis over the entire 3-D image may then be 
calculated as

             
(11)

where Q is the total number of image voxels, r is the 
decomposition level to which   belongs (r = 1corresponds 
to the first decomposition level),   is the number 
of coefficients in s,   is the number of code-cubes in s (the 

code-cubes are of equal size),   is as defined in (10), and 
factor   is a function of the specific wavelet filters used for 
reconstruction and is calculated from the filter coefficients 
[16].

In order to attain a gradual increase in peripheral quality 
around the VOI, we define a weighted MSE for code-cube  

 over the entire reconstructed 3-D image as follows:

            (12)

where   is the weight of   as defined in (4) and     
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is as defined in (11). Note that for code-cubes within the VOI, 

  and  .However, for code-cubes 

outside the VOI,   and  . 

The key to attaining VOI decoding capabilities at quality 
layer L, is to include only the truncated bit-streams of those 
code-cubes within the VOI. Under this condition, the output 
bit-stream at quality layer L is the summation of the truncated 
bit-streams of the code-cubes within the VOI

          
(13)

where   denotes the overall bit-rate of   and 
 

denotes the bit-rate of  .

In order to increase the overall quality of the reconstructed 3-D 
image at quality layer L, while retaining the VOI decoding 
capabilities and allowing for the decoding of contextual 
background information, we encode some bit-streams 

  along with bit-streams  . Hence, the 
distortion can be expressed as follows:

   

         
(14)

where   denotes the weighted MSE added to the overall 

distortion   if   is not included in layer L, and   is 

as defined in (12). Using (10)–(12),   is calculated by 
equating  , the quantized representation of the kth sample 

of code-cube  , to zero. Where   ( is 1 if   is 
included in layer L (otherwise it is zero).

In order to attain the optimal overall reconstruction quality 
of the 3-D image at quality layer L, we minimize   in (14) 
under two bit-rate constraints

                                          

        (15)

where   is the bit-rate of  ,   is the maximum 

available bit-rate at quality layer L, and   is 1 if 

  is included in layer L (otherwise it is zero). Note that 
the constraints in (15) force the bit-rate spent on bit-streams 

  to be less than the bit-rate spent on bit-streams 

  . This guarantees that the VOI is decoded at higher 
quality than the rest of the 3-D image. 

We solve the optimization problem defined in (14), (15) by 
finding the points that lie on the lower convex hull of the 
rate distortion plane corresponding to the possible sets of bit-
stream assignments.

table I.  lossless comPressIon ratIos and bIt-
rates of 3-d medIcal Images usIng varIous 

comPressIon methods

MRI: Magnetic Resonance Imaging, bpv: Bits Per Voxel

III. exPerImental results

We compared the performance of the proposed compression 
method to that of 3D-JPEG2000 with VOI coding, using the 
MAXSHIFT and GSB methods. 3D-JPEG2000 employs 
a 3-D discrete wavelet transform across the slices with the 
resulting 3-D sub-bands being entropy coded by first grouping 
coefficients into smaller 3-D sections called 3-D code-blocks.

In our proposed compression method, we employed the Le 
Gall 5/3wavelet filter implemented using the lifting step 
scheme to decompose the test images with three levels 
of decomposition in all three dimensions. For the case of 
3D-JPEG2000, we employed three levels of decomposition 
in all three dimensions. 

Lossless compression ratios and bit-rates for the three 
evaluated methods are tabulated in Table I. The proposed 
method achieves compression ratios comparable to those 
achieved by MAXSHIFT and the GSB method, with the 
additional advantage of allowing for decoding any VOI from 
the same compressed bit-stream.

In order to measure the reconstruction quality of the VOI and 
background at different bit-rates, we employed the PSNR 
which for a 3-D image of bit-depth m is defined by

             
(17)

            (18)

where MSE denotes the mean square error,   is the 
maximum voxel value in the 3-D image, K is the total number 
of voxels in the area to be evaluated (e.g., the VOI),    and   
are  the original and reconstructed values of the kth voxel, 
respectively.

It is important to remember that, in the proposed method, the 
entropy coding process needs to be performed only once for 



a 3-D medical image, since the decoding of a VOI simply 
requires the reordering of the compressed bit-stream. Finally, 
it is important to remark that in the proposed method, all 
information needed to perform the bit-stream reordering 
procedure and layer optimization technique is stored and 
transmitted as header information.

Iv. conclusIon

We presented a scalable 3-D medical image compression 
method with optimized Volume of Interest coding within 
the framework of interactive telemedicine applications. The 
method is based on a 3-D integer wavelet transform and a 
modified version of EBCOT that exploits correlations between 
wavelet coefficients in three dimensions and generates a 
scalable layered bit-stream. The method employs a bit-
stream reordering procedure and an optimization technique 
to optimally encode any VOI at the highest quality possible 
in conjunction with contextual background information from 
a lossy to a lossless representation. We demonstrated the two 
main novelties of the method; namely, the ability to decode 
any VOI from the compressed bit-stream without the need to 
recode the entire 3-D image; and the ability to enhance the 
visualization of the data at any bit-rate by including contextual 
background information with peripherally increasing quality 
around the VOI. The proposed method will achieves higher 
reconstruction qualities than those achieved by 3D-JPEG2000 
with VOI coding at a variety of bit-rates. 
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