
Key-Based Top-K Search in Multidimensional
Databases

K.Anuratha1, S.Senthamaraikannan2 and R.Rajaguru3

1Department of Computer Science and Engineering, 2&3Department of Information Technology,
Sethu Institute of Technology, Virudhunagar District, India.

E-mail: anuvinaya2003@gmail.com, stanfordssk@gmail.com, rajaguru.rama@yahoo.in

Abstract - Previous studies on supporting free- form keyword
queries	over	RDBMSs	provide	users	with	linked-structures	(e.g.,	
a	set	of	joined	tuples)	that	are	relevant	to	a	given	keyword	query.	
Most of them focus on ranking individual tuples from one
table or joins of multiple tables containing a set of keywords.
The problem of keyword search in a data cube with text-
rich dimension(s) (so-called text cube) is studied. The text cube
is built on a multidimensional text database, where each row is
associated with some text data (a document) and other structural
dimensions (attributes). A cell in the text cube aggregates a set
of documents with matching attribute values in a subset of
dimensions.	Given	a	keyword	query,	the	goal	is	to	find	the	top-k
most relevant cells. This project studies the problem of keyword-
based	top	k	search	in	text	cube,	i.e.,	given	a	keyword	query,	find	
the top-k most relevant cells in a text cube. When users want
to	retrieve	information	from	a	text	cube	using	keyword	queries,	
relevant cells, rather than relevant documents, are preferred
as the answers, because:(i) relevant cells are easy for users to
browse; and (ii)relevant cells provide users insights about
the relationship between the values of relational attributes and
the text data. The proposed algorithm uses relevance scoring
formula	 for	 	finding	 the	 top-k	relevant	cells	by	exploring	only	
a small portion of the whole text cube (when k is small) and
enables early termination.

I. IntroductIon

Analysis of documents in text databases and on the World
Wide Web has been attracting researchers from various areas,
such as data mining, machine learning, information retrieval,
database systems, and natural language processing.

In general, studies in different areas have different emphases.
Traditional information retrieval techniques (e.g., the
inverted index and vector-space model) prove to be efficient
and effective in searching relevant documents to answer
unstructured keyword-based queries. Machine learning
approaches are also widely used in text mining, providing
with effective solutions to various problems. For example,
the Naive Bayes model and the Support Vector Machines
(SVMs) are used in document classification; K- means and
the Expectation-Maximization (EM) algorithms are used in
document clustering.

On the other hand, data warehousing and data mining also
play important roles in analyzing documents, especially those
stored in a special kind of databases called multi-dimensional
text databases (ones with both relational dimensions and
text fields). While information retrieval mainly addresses

searching for documents and for information within
documents according to users’ information needs, the goal
of text mining differs in the following sense: it focuses on
finding and extracting useful patterns and hidden knowledge
rom the information in documents and/or text databases, so
as to improve the decision making process based on the text
information.

In many real-life database applications, documents and the
text data within them are stored in multidimensional
text databases [2]. These kinds of databases are distinct
from traditional data sources including relational
databases, transaction databases, and text corpora. Formally,
a multidimensional text database is defined as a relational
database with text fields. A sample text database is shown
in Table 1.1. The first three dimensions (Event, Time, and
Publisher) are standard dimensions, just like those in relational
databases. The last column contains text dimensions which
are documents with text terms. Text databases provide
structured attributes of documents, and the information needs
of users vary where such needs can be modeled hierarchically.
This makes OLAP and data cubes applicable. For instance
(using Table 3.1), if a user wants to read news on the ice
hockey games reported by the Vancouver Sun on February
20, 2010, then two documents d1 and d3 matching the query
{Event = Ice hockey,

table I: a multIdImensIonal text database - olymPIc news

Event Time Publisher
Text Data:
Documents

Ice Hockey 2010/2/20 Vancouver Sun D1={t1t2t3t4}

Ice Hockey 2010/2/23 Global and Mail d3 = {t1, t2, t3, t6}

Ice Hockey 2010/2/20 Vancouver Sun d4 = {t2, t4, t6, t7}

Figure Skating 2010/2/20 Global and Mail d5 = {t1, t3, t5, t7}

Figure Skating 2010/2/23 Vancouver Sun d6 = {t2, t5, t7, t9}

Curling 210/2/23 New York Times d7 = {t3, t6, t8, t9}

Time = 2010/2/20, Publisher = Vancouver Sun} will be
returned to her. If another user wants to skim all Olympic
news reported by the Vancouver Sun on that day, we shall
roll up to query {Event = _, Time = 2010/2/20,Publisher
= Vancouver Sun} and return documents d1, d3 and d5 to
her. The opposite operation of roll-up is called drill-down.
In fact, roll-up and drill-down are two OLAP operations of
great importance. Therefore, to meet different levels of
information needs, it is natural for us to apply the data cube to

AJCST Vol.1 No.1 January - June 201229

Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.1 No.1, 2012, pp.29-36

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2012.1.1.1676

model and extend this text database.

II. related work

A. Keyword Search in RDBMs

Although based on different applications and motivations,
keyword search in text cube is related to keyword search in
RDBMSs, which has attracted a lot of attention recently by
G. Weikum, et al. (2007). Most previous studies on keyword
search in RDBMSs model the RDB as a graph (tuples/
tables as nodes, and foreign-key links as edges) and focus
on finding minimal connected tuple trees that contain
all the keywords. They can be categorized into two types.
Y. Luo, et al. (2007) proposed the first type that uses SQL
to find the connected trees. B. Ding, et al. (2007) presented
the second type which materializes the RDB graph and
proposes algorithms to enumerate (top-k) sub trees in the
graph. Different from these two types of works, two recent
studies L. Qin, et al. (2009) found single-center sub graphs
from the RDB graph and multi-center induced sub graphs.

B.OLAP on Multidimensional Text Data

Cindy Xide Lin, et al (2008) introduced the text cube model
and it mainly focuses on how to partially materialize inverted
indexes and term frequency vectors in cells of text cube, and
how to support OLAP queries (not keyword query) efficiently.
D. Zhang, et al. (2009) proposed the topic cube model and is
different from the text cube. The topic cube materializes the
language model of the aggregated document in each cell.
Efficient algorithms are proposed to compute this topic cube.
The techniques presented by Cindy Xide Lin, et al. (2009)
cannot be used directly to support keyword search, because
the information materialized in text cube (term frequencies
and inverted indexes) and in topic cube (language model) is
query- independent.

C. Bottom-Up Computation

Constructs the data cube bottom-up, from the most aggregated
apex cuboid to group-bys on a single dimension, then on a
pair of dimensions, and so on. It also uses many optimization
techniques introduced in the previous section. Figure 2.1
illustrates the processing tree and the partition method used in
BUC on a 4-dimensional base table. Subfigure (b) shows the
recursive nature of BUC: after sorting and partitioning data
on dimension A, we deal with the partition (a1, _, _,_) first
and recursively partition it on dimension B to proceed to its
parent cell (a1, b1, _, _) and then the ancestor (a1, b1, c1,
_) and so on. After dealing with partition a1, BUC continues
on to process partitions a2, a3 and a4 in the same manner until
all cells are materialized.

Fig.1 (a) BUC Processing Tree (b) BUC Partition

D. Frequency Pattern Mining Algorithm

Frequent patterns are patterns (sets of items, sequence, etc.)
that occur frequently in a database . The supports of frequent
patterns must exceed a pre-defined minimal support threshold.
Frequent pattern mining has been studied extensively in
the past two decades. It lays the foundation for many data
mining tasks such as association rules and emerging pattern
mining. Although its definition is concise, the mining
algorithms are not trivial. FP-Growth is more important as
efficient emerging pattern mining algorithms that use the FP-
tree proposed in FP-Growth as data structures. The first
scan of a database finds all frequent items, ranks them
in frequency-descending order, and puts them into a head
table. Then it compresses the database into a prefix tree called
FP-tree. A complete set of frequent patterns can be mined by
recursively constructing projected databases and the FP-trees
based on them.

III. concePtual desIgn

A. Automatic Keyword Extraction

The task of automatic keyword extraction is to identify a
set of words, representative for a document. To achieve this
we use a simple statistical approach. Thereby, as we intend
to exploit the properties of a document and of a repository,
we need to find the comparable measures. One of the simple
weighting is TF*IDF. The TF part intends to give a higher
score to a document that has more occurrences of a
term, while the IDF part is to penalize words that are popular
in the whole collection. The further factors such as position
of the word in a document or the length of a document is not
comparable, as the database entries are much more shorter.
Due to the type of extraction, we divide the automatic
keyword extraction into 3 groups:

• Text – Based
• Database – Based
• Text – and Database – Based

B. Keyword Request Processing

In order to construct the structured keyword request for

AJCST Vol.1 No.1 January - June 2012 30

K.Anuratha, S.Senthamaraikannan and R.Rajaguru

an entity (i.e. individual, instance, “thing”), we first need to
identify the attributes in which each keyword appears. This
is performed in one step using an inverted index available
in the entity repository Then the score is computed for every
sub query q, which is a combination of an attribute a and a
keyword k so that q = “k occurs in a”. In our work we evaluate
several attribute ranking approaches. In the next step, possible
structured queries, each being a conjunction of sub queries,
are constructed. Finally, these queries are ranked using query
ranking criteria discussed in the following in Section and
executed against the entity repository.

C. Attribute Ranking Factors

As our keyword request is a bundle of terms without
the specification of attribute names, our first task is an
identification of the attributes where each keyword appears
in the repository. Then a specific score is computed
for each attribute/keyword pair. The three intuitive and
desirable constraints that any reasonable retrieval formula
should satisfy are: term frequency tf, inverse term frequency
idf and document length normalization dl. Applied to our
attribute-specific approach, the tf heuristic intends to assign
a higher score to an attribute of a single entity that has more
occurrences of a query term. By intuition, in a collection, the
more entities a term appears in a certain attribute,
the worse discriminator it is, and it should be assigned a
smaller idf weight. The attribute length normalization is
to avoid favoring long attributes, as long attributes generally
have more chances to match a query term simply because
they contain more words. As to the entity representation
considered in this work, its attribute values tend to contain
in average about 2 words, so that the tf and dl score will have
no effect, as the term usually appears only once pro attribute
value and all attributes are approximately of the same length.
Because of this as a basis for our score computing we use
only the attribute-specific idf weight of a keyword, which is
computed as follows :

Attribute specific IDF score (IDF):

where DF(attribute) is number of entities containing the given
attribute and DF(keyword, attribute) is number of entities
where the given keyword appears in the given attribute.
Attribute specific DF score (DF):

Opposite to idf , the method that is based on the probability
of Key word match in an attribute can be used. The core idea
of the df score is that probability of the match increases with
increasing spreading of the keyword over the attributes. If the
keyword appears in the given attribute more frequently than
in other attributes than this attribute/keyword combination
becomes the higher score than the others. The spread score is
calculated according to the formula:

where DF (keyword, attribute) is number of documents,
where the keyword appears in the given attribute. The sum of
the df scores of different attributes is 1.

D. Query Score

After obtaining the attribute-specific score for each attribute/
keyword combination, our next step lies in constructing the
structured query for further request processing. The
key idea is that a structured query is composed from
subqueries using the and-semantics, corresponding to the
“and” operator of the boolean model. Let q1 ,..., qn be a set of
subqueries that represent the attribute/keyword combinations,
a structured query Q is then defined as the conjunction of the
subqueries q1◦ ...◦ qm , m ≤ n.The relevance of the whole
query is represented as a sum of the scores of all subqueries.

Score (query) = Σ Score(subquery q)

where Score(subquery q) can be defined using a combination
of the above attribute ranking factors. Typical combinations
are: IDF, DF, IDF*avg(DAF), IDF*CAF, ARank, IDF*ARank.

E. Query Ranking

The aim of the query ranking procedure is to identify the
structured query which delivers possibly precise results
to the keyword entity requests. But the number of possible
structured queries increases exponentially with the growing
number of keywords and attributes in the repository. As for
instance Figure 3.1 shows, we become 7 structured queries
from only 3 sub queries. For that reason the construction
and processing of all intended entity requests will be a very
expensive and time consuming operation. The first native
solution is to construct all possible queries, rank them before
execution and process only the high-scored conjunctions.
But typically, the number of queries is too high, such that
it is infeasible to build and score all possible combinations.
Following optimization algorithm to iteratively calculate the
highly scored requests.

Given a a sorted sub query list { qn1 ... qnk } for all occurrences
of a keyword n in different attributes, we build a set S = {{ q11
... q1k }, ... , { qn1 ... qnk }} for all keywords from 1 to n. Our
task is to limit the number of queries to be constructed, as we
are only interested in a few top-k highly scored queries.

For this purpose we introduce two bounds for the score of the
query Qtop-k. The upper bound corresponds to the score of
the query Qk, that consists of the sub queries q at k position.
The lower bound is the sum of the scores of elements at the
(k+1)-th position in each list. For a query Qk istrue:

Key-Based Top-K Search in Multidimensional Databases

AJCST Vol.1 No.1 January - June 201231

score(Qk-1) > score (Qk) > score(Qk+1)

The intermediate scores are obtained due to the fact that some
of highly scored elements at k position can build a number
of highly scored combinations with the other lower scored
elements in the lists. Due to this fact, a list of queries is
constructed with the participation of the sub queries at the
position k. The query Q is called top-k query when its score
satisfies the condition:

score(Qk) ≥ score (Qtop-k) > score(Qk+1)
Following figure is an example for constructing the top-1
queries. The list of constructed queries consists of 40
queries, but only 11 of them satisfy the score bounds and are
considered as top-1 queries. With the native solution there
would be 70 possible queries.

The requests with the highest scores are then executed
till we obtain the intended minimum number of results.
Algorithmically this method gives an advantage, especially if
the length of the lists (number of attributes) is big.

The documents returned in a ranked list produced will be
clustered according to the specifications set forth by the
algorithm. The algorithm decides which cluster the documents
belong in, and makes the distinction between highly relevant,
partially relevant, and not relevant documents. The algorithm
utilizes similarity measures and ranking heuristics that
evaluate the relevance of a page. The high level workflow
of the algorithm is in Fig.Each document in the collection
is evaluated based on key similarity metrics and ranking
heuristics. For each field, a relevancy grade is recorded for
the document based on its satisfaction of the criteria listed
for the given field and grade. A ranking function produces
an overall score that combines the grades with the weight for
each field for a given document and is explicitly detailed in
a later section. The resultant score determines the cluster the
document belongs in.

A ranking function produces an overall score that combines
the grades with the weight for each field for a given document
and is explicitly detailed in a later section. The resultant
score determines the cluster the document belongs in. The
fields, weights, ranking criteria, and relevancy grades used
to deduce a score for each item is illustrated in Table 1. In
Table 1, key fields within each document are identified and
assigned a weight and relevancy grade. The motivation for
choosing these fields is further identified in the next section.
It represents the maximum number of words in the end-user
query minus words that have no meaning. It is assumed that
more than one key term is entered so that θ>1. C1θ and C2θ
represent constants with the values 2/3 and 1/3 respectively.
Thus, C1 and C2 represent fractions of the number of query
terms. In all cases, the resulting value is rounded to
the nearest whole number. Thus, the notation [C1θ,θ], for
example, represents the range in the number of query terms
that must be included within the specified field. Y3, Y2, and
Y1 represent the number of occurrences of a query term in a

document. The values used for this trial were Y3≥3,

2≤Y2≤3, 0≤Y1<2. Note that W1, W2, and W3 are weights
used to assign an importance value to each field, and were set
to 0.214, 0.142, and 0.072 respectively.

The algorithm is given by
Step 1: The character is assigned with their location in the
text.
Step 2: Merged same character information with a list of all
locations information attached to each character.
Step 3: Characters location information are saved on the
secondary storage as an index file. In general, the full text used
a large-scale of electronic document so; the generated index
becomes a large-scale too. Therefore, the character location
information data group is arranged in ascending order to do
the comparing processing for retrieving it at high speed.

As an example, suppose the end-user query consists of
six distinct terms. Thus, θ is 6, C1θ is 4, and C2θ is 2 since
C1 and C2 are set to 2/3 and 1/3 respectively. For the term
frequency category, the document returned for the given
query must contain between 4 and 6 query terms inclusive
with each term occurring with a frequency of at least Y3 in
order to receive a relevant grade. To receive a

table II fIelds, weIghts, and relevancy crIterIa

partially relevant grade, the document must contain
between 4 and 6 query terms with each term occurring with a
frequency of Y2. A grade of not relevant is given as the default
case for a document that does not satisfy the relevant or

AJCST Vol.1 No.1 January - June 2012 32

K.Anuratha, S.Senthamaraikannan and R.Rajaguru

partially relevant categories. Similarly, the document receives
a relevant, partially relevant, or not relevant grade for each
of the remaining fields. The motivation for using these fields,
weights, constants, and criteria are delineated in the sections
below.

F. Fields and Constant

The HTML makeup of page contains key fields that can
indicate the importance of the document and improve retrieval.
Intuitively, the title, six headings, and emphasized text such
as bold, underline, and italic provide useful information about
the page. Another heuristic that can play a significant role in
retrieval effectiveness is location. The idea behind location
is that a term near the beginning of the page may carry
greater significance than terms lower on the page for term
frequency, if a term occurs many times in the document;
it represents the importance of the term within the page and
may symbolize the importance of the term in the document.

G. Relevancy Grades

The relevance grades used in this study are derived from
the notion of multi-graded relevance that is amply evident
previous work. For each heuristic, a top grade is given
assuming the document satisfies the necessary requirements
to the fullest. This stringent criteria for each field is visible
down the leftmost column of Table 1 under grade three.
Similarly, a satisfactory grade is given when a document only
partially satisfies the criteria. The requirements across each
field are evident in the middle column of Table 1 under grade
two. Finally, a low grade, which is displayed in Table
1 under grade one, characterizes non-relevant documents
that either fail to meet the ranking criteria. Many documents
may receive conflicting grades by satisfying relevant criteria
in some cases, and partially or non-relevant criteria in other
cases. Thus, these scores are aggregated into a weighted
ranking function that combines individual scores as a weighted
average to predict the most fitting category for the document,
based on nature of relevance criteria within the document.

H. Cluster Interface

This interface illustrates how the document URL’S
should be displayed to the user once the user submits a
query. The clusters delineate the region of relevance each
document belongs in. Documents within a specific cluster
are not grouped internally according to relevance. Note that
this interface represents the output of the system and was not
shown to users for evaluation purposes.

I. Weights

Each measure and heuristic is given a weight to assign an
appropriate importance value to the field. This value represents
how much weight the field carries in assessing the relevance
of a document and is included in out clustering scheme. In

our algorithm, the assignment of weights to each heutristic
is based on tiered-approach, where fields that are equally
important are grouped together based on ad-hoc common
sense and given a proportional weight in comparison to the
other tiers.

J. Ranking Criteria

To determine the nature of the criteria in Table 1 that best
fits relevant, partially relevant, and non relevant documents,
previous work on document text characteristics was applied.
Since our algorithm attempts to cluster according to regions
of relevance, characteristics of relevant, partially relevant,
and non-relevant regions serve as decisive factors within our
ranking function. Highly relevant pages tend to discuss the
topic at length, deal with several aspects of the topic, have
many terms that pertain to the requested topic, and have many
expressions to refer to the concepts discussed. Indeed, highly
relevant documents often answer the users question, include
the users search terms or concepts, are specific to the users
query, and are authoritative sources. In contrast, partially
relevant items tend to mention the topic only briefly. They
contain only a few words matching the topic, and may
discuss the topic from alternative viewpoints extending
upon the original request. They often deal on partially with
the subject, are not specific to the users query, and contain
multiple concepts. Finally, non-relevant documents are
often totally off target. This description of relevant documents,
partially relevant, and non-relevant items can be translated
into specified criteria that these classes of documents possess,
as described in Table.

K. Ranking Function

Scores for each field in a document are aggregated
to achieve a total overall score based on the weight of each
field, and satisfaction of the criteria for each field. A weighted
average consists of an estimation of the importance of every
ranking factor through a weight proportional to the projected
value. Thus, our ranking function combines the weights and
relevancy grades received by a given document for each
factor. The overall score is calculated as:

where n represents the total number of ranking factors, W is
the weight of each factor, λ is the relevancy grade received by
a document for each factor, q is the query, and d represents
the document. The score represents the category that best
suits the document, and can fall in any one of three possible
regions depending upon the characteristics of the document
itself. The score category result for the document will fall
in one of the following clusters by converting sc(q,d) to a
region of relevance, namely Cluster(q,d).

Key-Based Top-K Search in Multidimensional Databases

AJCST Vol.1 No.1 January - June 201233

The constant σ represents the maximum score possible
from sc(q,d), f1 represents a constant factor of the maximum,
and f2 represents a second constant factor of the maximum.
The settings for the values used in our study allow for equal
ranges that the score can fall within for each of the three
regions of relevance. The constant values are 3 for σ since the
maximum possible score according to sc(q,d) is 3, 7/9 for f1,
and 5/9 for f2. The lowest possible score according to sc(q,d)
is 1. As a result of this equation, every document d for a query
q will be placed in either the relevant, partially relevant, or
non-relevant cluster.

L. Indexing
Search engine indexing entails how data is collected, parsed,
and stored to facilitate fast and accurate retrieval. Index design
incorporates interdisciplinary concepts from Linguistics,
Cognitive psychology, Mathematics, Informatics, Physics,
and Computer science. An alternate name for the process is
Web indexing, within the context of search engines designed
to find web pages on the Internet. Popular engines focus on
the full-text indexing of online, natural language documents,
yet there are other searchable media types such as video,
audio, and graphics. Meta search engines reuse the indices of
other services and do not store a local index, whereas cache-
based search engines permanently store the index along with
the corpus. Unlike full text indices, partial text services
restrict the depth indexed to reduce index size. Larger services
typically perform indexing at a predetermined interval due to
the required time and processing costs, whereas agent-based
search engines index in real time.

Iv. ProPosed work

A. Initial Cluster Generation
At this step the input is analyzed, initial clusters are produced
and outliers are removed. The first thing for soft Clustering
to do is to decide what constitute as “similar” documents.
Essentially, we need to find a threshold value λ such that two
documents are considered similar if and only if f (x, y) > λ .
Since soft clustering is designed to adapt to different similarity
measures f, it is not reasonable for the user to supply a value
for λ . As a result, SISC determines the appropriate value of λ
to be based on the input documents. The value of λ can neither
be too high, such that no documents will be clustered at the
end; nor too low, such that all documents will be clustered
into one cluster. Thus, the algorithm chooses λ such that half
of the documents are assigned at least to one cluster centroid.
This is done by the following method:

• Pick a set of k documents, assigning each one as the initial
cluster centroid of a cluster.

• Pick λ as the largest value such that for half of the
documents q in the data set, there exists a p such that f
(p , q) > λ ,p є C , q є D where C is the set of cluster
centroids and D is the document set. This can be done
by calculating all the similarity values f (p , q), p є b.
Pre-Processing C, q є D and sorting them.

B. Pre-Processing

Electronic documents cannot be applied to a computer
algorithm in their natural state; some form of processing is
required to put them into a structure that can be used by the
algorithm. The most common statistical method of document
representation is the Vector Space Model. The basic VSM
involves storing documents as vectors in which each
element corresponds to the frequency of a term in the
document. Essentially this model provides a ‘bag of words’
in that the positioning of each term is ignored. Usually the
words are weighted according to their power of discrimination
between topics, i.e. words that have limited discrimination
power need to be de-emphasized and vice-versa.

The first step in reducing the dimensionality of the entire
document collection is by feature selection. Words that are
believed to contain little or no meaning can be removed from
the list of candidates. These terms make what is commonly
referred to as a stop list and typically contain prepositions,
pronouns, articles and other non- descriptive words, for
example, ‘the’, ‘at’ or ‘into’.

In natural language processing, conflation is the process of
merging or grouping together non-identical words that refer
to the same principal concept. A word stemming algorithm
can be used to conflate terms, for example, by removing any
attached suffixes (for example ‘-ly’, ‘-ness’ or ‘-ment’) and
in some cases prefixes (such as ‘anti-, ‘bi-’, or ‘semi-’) from
terms. This can be a useful tool in dimensionality reduction
since the stem of a term represents a broader concept than
the original term. For example ‘employing’, ‘employs’ and
‘employed’ have the same stem ‘employ’.

Pre-set thresholds could be used to remove terms appearing
in more than an upper bound and less and a lower bound
number of documents. The ability of words to discriminate
content reached a peak at a rank order position half
way between the two cut offs positions and fell off to near
zero, from the peak in both directions, when nearing the cut
off points. Rare words as well as very common words are
assumed to contain very little information. Hence, it is safe to
remove them and thus significantly reduce the dimensionality
of the input space without compromising the text classification
performance of the system.

C. Top-K Cells Retrieval

AJCST Vol.1 No.1 January - June 2012 34

K.Anuratha, S.Senthamaraikannan and R.Rajaguru

One key question in document retrieval is how to rank
documents based on their degrees of relevance to a query.
Much effort has been placed on the development of ranking
functions. Traditionally, document retrieval methods only use
a small number of features. Thus, it is possible to empirically
tune the parameters of ranking functions. In that sense,
the methods are unsupervised and language models for
information retrieval are such methods. Currently, additional
features have proved useful for document retrieval, including
structural features and query-independent features. This
increase in features makes empirical tuning of parameters
difficult. The paradigm of employing supervised learning in
construction of document retrieval models has drawn recent
attention. For instance, document retrieval is formalized as
classification. Documents are judged within two categories:
relevant and irrelevant. Formalizes document retrieval as
binary classification and solves it using SVM and Maximum
Entropy propose employing discriminative training in creating
a ranking model. For another example, document retrieval is
regarded as learning to rank.

D. Feature Extraction

For each document, the extraction process was as follows:
• The set of all words that appeared at least once in the

document was extracted – this was labelled as the “All
Words” set.

• An additional set of words was also extracted from
each document – those occurring at least once between
the opening and closing “Heading 1” text decoration
tags (<H1> … </H1>). This set of extracted words was
labelled as the “H1 Tag” set.

• If stop-word removal was switched on, we removed any
word from the appropriate set of extracted words that
was listed in our stop-word list, we used V. .

• If “case-sensitive” processing was switched off, words
with the same spelling (but different case) were combined,
if switched on, these words were considered as not
being the same.

• The frequency of each resulting word in that document
was then recorded and stored.

Once each set of words has been extracted from each
document, the next step is to combine one of the extracted
sets into a master word list from which each document
vector can be built. The resulting list is sorted in descending
overall frequency, and the “all words” list is then pruned by
selecting only the top 1% of most frequently occurring
words. The decision to prune the master word vector leads
to a decreased size of each document’s vector, which leads
to a decreased time both in terms of building the vectors,
but also in clustering them. A very important point is that
the “H1 tag” master word list was not pruned, seeing as it
comprises significantly fewer words. Clearly, we have a
choice of which extracted word set, either the “all words” set

or “H1 tag” set, to use when constructing the master word
list. The choice we employ at this point is based on the set-up
of each individual experiment. Finally, each feature vector
vi was created for each document i, such that the jth element
in vi was wji/si, where wji is the number of occurrences in the
specified set of extracted words belonging to document i of
the jth most frequent word in the chosen master word list,
and si is the total number of words from the specified set of
extracted words from document i. We have taken the step to
“normalise” each document vector by dividing each term by
the total number of words in the document. This ensures
that large documents do not have undue influence over
smaller documents that may contain the same terms, but just
less frequently. In summary, the process of building the
document feature vectors requires a choice regarding which
set of extracted words to use at three distinct stages. These
stages are the creation of the master word vector, the set of
document words from which to reference each element in
the master word vector and finally the “normalisation”
factor to use.

v. recall and PrecIsIon

Recall and precision are two techniques, which are simple to
use and are based on predicate logic. Imagine a user makes a
request for information I on a set of all relevant documents
R. The set of all relevant documents is information retrieval
system has processed the query and has come up with a set of
answer documents A. This set of answer documents is the
circle on the right. The intersection of these two circles
is the part we are interested in. This intersection, lets call it
Ra, is the set of documents in the answer set that are relevant
to the user. Therefore we can define recall as: -
The fraction of the relevant documents which has been
retrieved.

And we can define precision as: -
The fraction of the retrieved documents which are relevant.

Plotted using Venn diagram below:

Key-Based Top-K Search in Multidimensional Databases

AJCST Vol.1 No.1 January - June 201235

Fig. 2 Venn diagram for precision and recall

We can see from this that if there was no intersection between
the two circles, then there would be no relevant documents
in the answer set and therefore Precision would be zero.
However, if the answer set circle wholly covered the relevant
documents set, then Precision would be one as all of the answer
documents are relevant. Standard recall levels of text retrieval
with and without document preprocessing techniques, with
the whole set of document collection for indexing and all the
queries for performance evaluation.

Fig. 3 Precision vs Recall

vI. conclusIon and future work

This research showed that clustering documents on the Web
by their regions of relevance is not only feasible, but also
quite successful. Our clustering scheme offers an accessible,
systematic, and versatile approach towards retrieving and
organizing search results to enhance the way in which users
of all domains meet their information seeking goals.
Since partially relevant documents are useful for novice
users at the beginning stages of their search, these documents
are now clearly identified and grouped together. Likewise,
expert users that have a clear idea of what they are seeking,
can efficiently access the documents within the relevant
cluster with our scheme.

The research presented in this study can be extended in
numerous directions.
• The algorithm can be embedded directly within a major

Web search engine clustering scheme so that it can be
fully operable on of the Web.

• Within each cluster, results can be ordered so that end-
users could more selectively target potentially useful
documents within each cluster.

• The number of clusters could be expanded to create
an even more fine-grained clustering system.

references

[1] Cindy Xide Lin et al. Text Cube: Computing IR Measures for
Multidimensional Text Database Analysis. In ICDM ’08: Proceedings
of the 2008 Eighth IEEE International Conference on Data Mining,
pages 905–910, Washington, DC, USA, 2008 IEEE Computer Society.

[2] Yintao Yu et al. iNextCube: Information Network-Enhanced Text
Cube. Proc. VLDBEndow., 2(2):1622–1625, 2009.

[3] Duo Zhang et al. Topic Modeling for OLAP on Multidimensional Text
Databases:Topic Cube and Its Applications. Stat. Anal. Data Min.,
2(56):378–395, 2009.

[4] S. Chaudhuri, R. Ramakrishnan, and G. Weikum, “Integrating db and
ir technologies: What is the sound of one hand clapping?” in Proc.
Conf. on Innovative Data Syst. Research (CIDR), 2005, pp.1–12.

[5] S. Amer-Yahia, P. Case, T. R¨olleke, J. Shanmugasundaram,
and G. Weikum, “Report on the db/ir panel at sigmod 2005,”
SIGMOD Record, vol. 34, no. 4, pp. 71–74, 2005.

[6] G. Weikum, “Db&ir: both sides now,” in Proc.ACM SIGMOD, 2007,
pp. 25–30.

[7] S. Agrawal, S.Chaudhuri, and G. Das, “Dbxplorer: A system for
keyword-based search over relational databases,” in Proc. IEEE Int’l
Conf. Data Eng. (ICDE), 2002, pp. 5–16

[8] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury, “Effective keyword
search in relational databases,” in Proc. ACM SIGMOD, 2006, pp.
563–574.

[9] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: top-k keyword query
in relational databases,” in Proc. ACM SIGMOD, 2007, pp. 115–126.

[10]]G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.
Sudarshan, “Keyword searching and browsing in databases
using banks,” in Proc. IEEE Int’l Conf. Data Eng. (ICDE), 2002, pp.
431–440.

AJCST Vol.1 No.1 January - June 2012 36

K.Anuratha, S.Senthamaraikannan and R.Rajaguru

