
AJCST  Vol.1 No.1  January - June 2012111

Abstract -  Grid computing is the major research area where 
the distributed resources are used. In Scheduling, the biggest 
challenge	is	to	acquire	optimum	solution	for	the	submitted	jobs	in	
the	grid.	For	large	subtask	require	time	consuming	computation,	
this paper introduces a new fault recovery mechanism into grid 
systems and an in depth study on grid service. We propose a 
new algorithm on considering these factors. In our proposed 
algorithm Recovery Mutual Scheduling, a catalog is used which 
will be responsive in accumulation of saving its state periodically. 
Consequently	 the	 overall	 throughput	 of	 a	 system	 is	 increased	
with the decentralized approach.

Keywords - Scheduling, decentralized approach, Process 
Repository, Process Manager, Status Collector, Process 
dispatcher, Catalog

1. IntroductIon

With the emergency of recent technologies, the need of 
computing grows rapidly. In order to achieve better utilization 
of resources, all over the world, Grid is proposed. The Grid 
concept is coordinated resource sharing and problem solving 
in dynamic, multi-institutional virtual organizations [1].Grid 
Computing has been used in many scientific applications. 
A grid system manages a large number of heterogeneous 
resources.

In [2] the grid is also defined as “A type of parallel and 
distributed system that enables the sharing, selection and 
aggregation of geographically distributed autonomous and 
heterogeneous resources dynamically at runtime depending 
on their availability, capability, performance, cost, and 
user’s quality of service requirements”. It enables users to 
share a large number of distributed computing resources 
over a network. Nowadays, grid computing has been widely 
accepted, researched, and given attention to by researchers 
[3].

Generally, there are four major means foachieving reliable 
systems: fault prevention, fault tolerance, fault removal, and 
fault forecasting [4]. It is clearly impossible to avoid all the 
faults during its execution. Fault prevention, prevents the 
occurrence or introduction of faults.Fault tolerance, avoid 
service failures in the presence of faults. Fault removal,reduce 
the number and severity of faults. Fault forecasting, estimate 
the present number, the future incidence, and consequences of 
faults. From the above definition, Fault tolerance which aims 
at delivering a correct service even in the presence of faults 

becomes a preferred choice for reliable Grid services.

The rest of the paper is organized as follows: In Chapter 
2 background work was discussed. Chapter 3 highlights 
previous research in the related area. Then, the computational 
algorithm of RMS method is depicted in    Chapter 4 and 
proposed system architecture and their functionalities. 
Chapter 5 shows the Experimental result. Finally, the 
concluding remarks and future direction of this research work 
is described in Chapter 7.

II. background work

A. Fault

The term error and fault are the same. Two types of fault, 
they are permanent and temporary. Permanent Faults include 
connection disruption, hardware breakdown. When an error 
disappears shortly it is called temporary fault. Software error 
comes under temporary fault.

B. Fault Tolerance

Fault Tolerance is the ability of a system to perform its 
function correctly even in the presence of faults.

C. Fault Recovery

Fault recovery can be roll forward or roll back. Roll forward 
recovery takes the system state at that time and corrects it i.e.it 
is able to move forward. Roll back recovery takes the system 
back to earlier state i.e. correct state and moves forward from 
that place.

III. related work

Simplest failure recovery technique is the Retry fault tolerance 
technique. In this, Whenever failure occurs, it will not be 
encountered in subsequent retries [12].Replication based 
technique is one of the popular fault tolerance techniques [5].
The word replica means multiple copies. Among the set of 
replicas, request from client is forwarded to one of the replica. 
I results in redundancy. By the replication of data, failure of 
some nodes will not be affected. Some researchers adopt the 
use of replication as well as masking [6], [7]. It uses replicated 
servers to mask the failures. Another well known technique is 
checkpoint with rollback-recovery. Check pointing is more 
popular fault tolerant approach used in distributed systems 

RMS: A Flexible Approach for Fault Tolerant Mechanism in the 
Grid Environments
R.Sivapriya and M.Karthikeyan

Department of Computer Science and Engineering,
Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram, Tamil Nadu, India

E-mail: sivapriyaraman@gmail.com

Asian Journal of Computer Science and Technology 
ISSN: 2249-0701 (P) Vol.1 No.1, 2012, pp.111-114

© The Research Publication, www.trp.org.in 
DOI: https://doi.org/10.51983/ajcst-2012.1.1.1696



[13]. It stores the current state of computation periodically, 
which can be used when node failure occurs. When an error is 
detected, the process is roll backed to the last saved state [8].
To restrict the influence of failures to the other agents in the 
same communication group, the message logging [7] or the 
checkpointing coordination [8] can be employed. 

Excessive checkpointing would result in performance 
degradation, while deficient checkpointing would still incur 
an expensive recovery overhead [9].If more number of 
checkpoints are used, it results in overhead. If less number of 
checkpoints are used, it results in re-computation overhead.

In paper [10] it describes, a flexible fault-tolerance mechanism 
implemented on Integrate grid middleware that allows the 
customization of several failure handling parameters and 
the combination of different failure handling techniques.In 
paper [11], Genetic algorithm (GA) for job scheduling on 
computational grids was proposed. 5 different parameters 
and 3 different operations are considered. Finally it would 
successfully execute the job by improving the reliability of 
the system.

Paper [14] based on replication techniques. Whenever an 
agent wants to move,is is replicated.For each group,there is a 
worker node and others  act as observers of the worker node. 
Worker node is responsible for the execution of the agent, 
whereas others receive a copy of the agent.

In paper [15], limitations of paper[14] are overcomed. They 
use a different leader election protocol and commit the local 
transaction using a 3PC protocol. but it leads to the violation 
of exactly once property.

Iv. recovery mutual schedulIng

The decisive factors of existing system like communication 
cost, Execution time and node failures occurred during 
execution are condensed in our proposed System. In this 
Recovery Mutual Scheduling (RMS) algorithm a catalog is 
used which will be responsive in accumulation of saving its 
state periodically? Consequently it is found that the overall 
throughput of a system is increased with the decentralized 
approach. 

Agents’ schedules user jobs on the best available resource 
by optimizing cost, time or cost/time. One of the significant 
Factors for grid environments is Job Scheduling .Subsequently 
allocating the job to the processor it starts its computation. 
While processing its computation may be stopped in the 
middle due to some reason. The reasons may be due to 
unavailability of resources insufficient memory etc. This 
proposed approach aims at recovering the process from 
faulty / erroneous situations. 

No Yes

Process 
Dispatcher Process

Repository

Process Manager

Status 
Collector

(Stage 1-RMS Alg)  

Fault

Catalog

Fault Manager

Execute (Stage 2 
RMS Alg)

Result 
Dispatcher

Fig.1 Data Flow Diagram

RMS algorithm works on two strategies. The RMS algorithm 
has been explained below. 

RMS Algorithm (stage 1)
Step 1 If (ID=0)
Step 2 Accumulate tasks {Split Process 
               into several tasks}
Step 3 Begin transaction 
Step 4  Input (Parameters: Process     Features )
Step 5     For (i=0 to njob) Execution of transaction 
 Initializing catalog registers each time
 Checks for failure
 Set ID=1
              Activate the catalog
 Transfer it to fault manager
 Fault Manager ()
 Return the ID if any failure 
Step 6    Returns the result set
 {jID, njob, tokens, jobfeature}
 
RMS Algorithm (stage 2)
Step 1 While (no task in pool) 
 Process List  = Collect the Process        
 For(i=0 to ncid’s)                 
 Get the input Attributes
 {jobid, cid,cstate,jobfeatures}

Procedure : Computetask()
 Return the result to result DispatcherSet
 status=0End

Procedure : ComputeTask()
Step 1 While(true)
Step 2 Set the input  attributes
Step 3 Start the execution
Step 4 Find the Processors (Resources) to allocate its  
 process
Step 5 Validate catalog at each quantum
Step 6 Return the result to result dispatcher
Step 7 If(fault occurred) Set status=1

AJCST  Vol.1 No.1  January - June 2012 112

R.Sivapriya and M.Karthikeyan



RMS: A Flexible Approach for Fault Tolerant Mechanism in the Grid Environments

AJCST  Vol.1 No.1  January - June 2012113

Step 8  if  ( Status =1)
Step 9 Update the Fault manager;
Step 10 Dispatch it again to Catalog

When a task is submitted to a process manager, the execution 
of stage 1 of RMS algorithm begins. During its execution, 
its state is stored periodically in the catalog. On successful 

completion of task, the result is submitted to the Result 
Dispatcher. If any fault occurs, it contacts the fault manager for 
recovery consequently Stage 2 of RMS algorithm execution 
takes place. The execution of the task begins from the faulty 
state and proceeds further until the result is submitted to the 
result dispatcher. 

v. exPerImental studIes

To study the performance of the algorithm, the proposed 
algorithm is compared with the existing algorithms multilevel 
hybrid scheduling algorithm and multilevel dual queue 
scheduling algorithm. Experimental results are carried out by 
simulation. 

A. Performance Metrics 

In our experiments, we measure the following metrics.
Processing Time: the time it takes to complete a prescribed 
procedure

B. Results
In this experiment, we vary the Processor as 8, 16, 32 and 64.

table I  Processor vs ProcessIng tIme (In mIllIseconds)

Fig.3 Comparison of MHSA,MDQSA and RMS

Figure 3 Depicts that No of Processors used by the three 
algorithms for processing is collectively combined with 
its time required to process .By means of Existing System 
algorithms for 8 Processor its processing time is 10 seconds 
whereas for MHS its 13 simultaneously for MDQS its 26. 
Consequently this graphical representation portrays that Time 
decreases as the number of processor increases. Moreover 
Time taken for processing is less when evaluated with 
previous techniques. In this experiment, we vary the Schedule 
Interval as 500, 1000, 1500, 2000 and  2500.

 table II  schedule Interval vs Job count(In mIllIseconds)

Fig.4 Comparison of MHSA,MDQSA and RMS 

Figure 4 illustrates that Job count initialized by the proposed 
approach Increases as the Scheduling Interval Increases. 
In the previous approaches no of Job count is lesser when 
compared with the current One. For 2000 milliseconds as per 

Fig.2 Collaboration Diagram



MHS algorithm it can schedule 88 jobs along with this for 
MDQS algorithm it can schedule 136 jobs. However as per 
RMS it can schedule 212 Jobs.In this experiment, we vary the 
Run Time as 100, 200, 300, 400, and 500.

The Pictorial representation between process Run Time and 
its count is shown in Figure 4.Its clear that as the Run Time 
and the process count are directly proportional to each other. 
Nevertheless applying this proposed approach the number 
of jobs taken to schedule is increasing when compare with 
the existing algorithms. Example within 400 ms RMS can 
execute 3212 number of jobs which is nearly more than 1000 
jobs higher with the existing algorithms.It can be observed 
that the Proposed RMS algorithm has a better performance 
than the existing algorithms.

table III  run tIme vs Process count(In mIllIseconds)

Fig.5 Comparison of MHSA,MDQSA and RMS 

One of the key advantage of the proposed algorithm is Less 
communication cost, Processing time and node failures. The 
reason for this behavior is that the process does not roll back 
to previous state.

vI. conclusIon

This paper presented a flexible Recovery Mutual Scheduling 
RMS Algorithm. By using the proposed algorithm, less 
communication cost, execution time can be achieved. In 
Future we have planned to still improve the performance of 
RMS algorithm and implementing in dynamic grids dealing 
with graceful degradation.

references

[1] Ian T. Foster, Carl Kesselman and Steven Tuecke, The anatomy 
of the grid enabling scalable Virtual Organisations, CoRR,cs.
AR/0103025,2001

[2]   M.Baker,R.Buyya and D.Laforenza,” Grids andGrid Technologies for 
wide area Distributed Computing” in Journal of software-Practice& 
Experience ,vol.32, no.15, pp.14371466,2002. 

[3] I. Foster, “The Grid: A new infrastructure for 21st century 
science,”Physics Today, vol. 55, no. 2, pp42–47, 2002.

[4] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell and Carl 
Landwehr, “Basic Concepts and  Taxonomy of Dependable and Secure 
Computing”, IEEE Trans, Dependable and Secure  Computing, vol. 1, 
no. 1, Jan-Mar 2004.

 [5] M. Strasser and K. Rothermel. “System Mechanism for Partial 
Rollback of Mobile Agent Execution”, Proc. 20th Int’l Conf. on 
Distributed Computing Syst., pp. 20-28, 2000.

[6] S. Pleisch and A. Schiper. “FATOMAS - A Fault-Tolerant Mobile 
Agent System Based on teh Agent-Dependent Approach”, Proc. Int’l 
Conf. on Dependable Syst. and Networks, pp. 215-224, 2001. 

[7]   S. Pleisch and A. Schiper. “Modeling fault-tolerant mobile agent 
execution as a sequence of agreement problems”, Proc. of 19th IEEE 
Symposium on Reliable Distributed Systems (SRDS’00), Nuremberg, 
Germany, pp. 11-20, 2000

[8]   E. Gendelman, L.F. Bic, and M.B. Dillencourt. “An Application- 
Transparent, Platform-Independent Approach to Rollback-recovery 
for Mobile Agent Systems”, Proc. 20th Int’l Conf. on Distributed 
Computing Syst., 2000.

[9]  Y. Ling, J. Mi, and X. Lin. “A variational calculus approach to optimal 
checkpoint placement”, IEEE Transactions on Computers, Vol. 59, 
No. 7, pp. 699-708, 2001.

[10]   Stanley Araujo de Sousa, Francisco Jos´e da Silva e Silva,” A Flexible 
Fault-Tolerance Mechanism for the Integrade Grid Middleware”.

[11] Javier carretero, fatos xhafa, ajithabraham, Genetic  Algorithm Based 
Schudulers for Grid Computing System.

[12]  Soon Hwang and Carl Kesselman “A Flexible Framework for Fault 
Tolerance in the Grid”, Journal of Grid Computing 1: 251–272, 2003.

[13] Pankaj Jalote, “Fault Tolerance in DistributedSystems”, ISBN: 0-13-
301367-7, 1994.

[14]    K. Rothermel and M. Strasser. “A fault-tolerant protocol for providing 
the exactly-once property of mobile agents”, Proc. of the 17th IEEE 
Symposium on Reliable Distributed Systems (SRDS’98), Dana Point, 
CA, pp. 138-147, 1998.

[15]   F.M. Silva and R. Popescu-Zeletin. “An approach for providing 
mobile agent fault tolerance”, Proc. of the 2nd Int. Workshop on 
Mobile Agents (MA’98), K. Rothermel and F. Hohl, Eds. LNCS 1477. 
Springer-Verlag, New Youk, 14-25, 1998.

AJCST  Vol.1 No.1  January - June 2012 114

R.Sivapriya and M.Karthikeyan


