
29

FFT/IFFT Processor for Ultra Wide Band Application

R.Radhika
Department of Electronics and Communication Engineering,

Saveetha Engineering College, Chennai - 602 105, Tamil Nadu, India
E-mail: radhika14490@gmail.com

(Received on 25 December 2013 and accepted on 05 March 2014)

Abstract – In this paper, a novel 128-Point FFT/IFFT processor

for OFDM-based UWB system has been proposed. In proposed

MRMDF (Mixed Radix Multipath Delayed Feedback)

architecture, high throughput rate can be achieved by using

four data paths. Furthermore, the hardware costs of memory

and complex multiplier can be saved by adopting delay

feedback and data scheduling approaches. In addition, the

number of complex multiplications is reduced effectively by

using a higher radix algorithm. The measurement results show

that the throughput rate of this test chip is up to 1Gsample/s

while it dissipates 175mW. When the throughput rate of our

processor meets UWB standard, it only consumes 77.6 mW

and multiplexers. The features of the proposed MRMDF

architecture are the following:

• Higher	 throughput	 rate	 can	 be	 provided	 by	 using	 four

parallel data paths;

• The	 minimum	 memory	 is	 required	 by	 using	 the	 delay

feedback approach to reorder the input data and the

intermediate results of each module.

• The	 128-point	 mixed-radix	 FFT/IFFT	 algorithm	 is

implemented to power consumption.

• The	number	of	complex	multiplier	is	minimized	by	using	the

scheduling	scheme	and	the	specified	constant	multipliers.

Keywords: Fast Fourier transform (FFT), orthogonal frequency

division multiplexing (OFDM), ultra wideband (UWB)

I. IntroductIon

 UWB standard in which the FFT throughput rate is
409.6 Msample/s. A mixed radix algorithm is a combination
of different radix-r algorithms. That is, different stages in
the FFT computation have different radices. For instance, a

128-point long FFT can be computed in two stages using one
stage with radix-8 PEs, followed by a stage of radix-2 PEs.
This adds a bit of complexity to the algorithm compared to
radix-r, but in return it gives more options in choosing the
transform length.

 128 point FFT/IFFT processor for UWB system radix-2
feedback (MRMDF), can provide a higher throughput
rate by using the multipath-path scheme. Furthermore,
the hardware costs of memory and complex multipliers in
MRMDF are only 38.9% and 44.8% of those in the known
FFT processor by means of the delay feedback and the data
scheduling approaches. The high-radix FFT algorithm is also
realized in our processor to reduce the number of complex
multiplications. Power dissipation is 77.6 mW when its
throughput rate meets FFT. However, this algorithm does
not offer the simple bit reversing for ordering the output
sequences.

II. mIxed radIx algorIthms

 In this section we describe a generalization of the basic
FFT that can be applied to a sample set where the size
is any composite (non-prime) number .We shall refrain
from describing an algorithm based on this idea in detail.
Instead, only the mathematical basis of the algorithm will
be described. The only real complexity in this algorithm is
the indexing scheme, which is far more difficult than the
simple bit reversing.

 Mixed radix algorithms are used for signal processing;
the basic idea is similar to the prime factor approach except
that there is no constraint on the factors. The penalty paid
is that complex-multiplications should be used while
combining the results of small-point blocks instead of just
re-ordering. Thus if N can be factored then the transform can
be implemented. The small-points can be further factored

AJCST Vol.3 No.1 January - June 2014

Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.3 No.1, 2014, pp.29-35

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2014.3.1.1728

30

along the same lines. The algorithm involves point FFT
computations, data re-ordering and complex multiplications
in between. For the two-factor approach the number of real
additions and real multiplications.

 There are circumstances where the use of this method
can bring worthwhile performance benefits. Sometimes
you don’t have the flexibility to design the system for radix
2 FFT’s. In the worst case, forcing the use of a radix 2
algorithm will double the FFT size required. This loss of
performance is compounded in multi-dimensional FFT’s.
Two dimensional image processing is a good example.
Images tend to come in a variety of sizes. The worst case of
doubling the row and column transform sizes will result a
factor of 4 increases in the total FFT size.

 Fourier analysis of finite-domain discrete-time signals
are widely employed in signal processing and related fields
to analyze the frequencies contained in a sampled signal,
to solve operations such as convolutions. The DFT can
be computed efficiently in practice using a Fast Fourier
transform (FFT) algorithm.

 Difference between DFT & FFT though FFT algorithms
are so commonly employed to compute the DFT, there is a
difference :”DFT” refers to a mathematical transformation,
regardless of how it is computed, while “FFT” refers to any
one of several efficient algorithms for the DFT.

1. The normalization factor multiplying the DFT and IDFT
and the signs of the exponents are merely conventions.

2. A normalization of for both the DFT and IDFT makes
the transforms unitary, which has some theoretical
advantages.

3. The convention of a negative sign in the exponent is often
convenient because it means that XK is the amplitude of
a “positive frequency” 2πk/ N.The DFT is often thought
of as a matched filter: when looking for a frequency of
+1, one correlates the incoming signal with a frequency
of −1.

 A Fast Fourier Transform (FFT) is an efficient algorithm
to compute the discrete Fourier transform(DFT) and its
inverse. ,be complex numbers. The DFT is
defined by the formula

 XK=

1

0

N

n
n

x
−

=
∑ e









M
L

kn k=0……,N-1

 This paper presents an energy-efficient single-chip,
1024-point Fast Fourier Transform (FFT) processor. The
transistor design has been fabricated in a standard 0.7 m
(L poly= 0:6 m) CMOS process and is fully functional on
first pass silicon. At a supply voltage of 1.1 V, it calculates
a 1024-point complex FFT in 330s. While consuming 9.5
m W, resulting in adjusted energy efficiency more than 16
times greater than the previously most efficient known FFT
processor. At 3.3 V, it operates at 173 MHz which is a clock
rate 2.6 times greater than the previously fastest rate.

 The Fourier transform (FFT) is one of the most widely
used digital signal processing (DSP) algorithms .While
advances in semiconductor processing technology have
enabled the performance and integration of FFT processors
to increase steadily unfortunately, led to an increase in
power consumption. This has resulted in a situation where
the number of potential FFT applications that are limited
by power not performance (e.g., portable applications) is
significant and growing.

III. fft Processor memory system archItectures

 As with most DSP algorithms, FFT’s make frequent
accesses to data in memory. FFT’s are calculated in stages,
where is the length of the transform and is the radix the FFT
decomposition. Each stage requires the reading and writing
of all data words.

1) Single Memory: The simplest memory-system
architecture is the single memory architecture, as in
which a memory of at least words is connected to a
process or by a bidirectional data bus. In general, data
are read from and written back to the memory once for
each of the Stages of the FFT.

2) Dual Memory: The dual-memory architecture places
two memories of size on separate buses connected to a
processor. Data begin in one memory and “ping- pong”
from memory to memory times until the transform has
been calculated.

3) Pipeline: For processors using pipelined architecture,
a series of smaller memories replace the word memory
.Either physically or logically, there are stages
processors and buffer memories are interleaved, as
well as the flow of data through the pipeline structure.

 Typically, an word memory is on one end of the pipeline,
and memory sizes increase by through subsequent stages,
with the final memory of size.

R.Radhika

AJCST Vol.3 No.1 January - June 2014

31

IV. hIgh-Performance oPeratIon

 At Vdd=3.3V, the processor is fully functional at 173
MHz calculating a 1024-point complex FFT in 30 s while
consuming 845 m W. While clock speed is not the only
factor, it is certainly an important factor in determining
the performance and area efficiency of a design compares
clock speeds of this cached-FFT design running with other
FFT processors versus their CMOS technologies. Despite
having a favourable maximum clock rate, the chip’s circuits
are not optimized for high-speed operation in fact, nearly all
transistors in logic circuits are near minimum size.

 The computational complexity is through directly
performing the required computation. By using the FFT
algorithm, the computational complexity can be reduced to,
where means the radix-r FFT. The radix-r FFT algorithm
can be easily derived from the DFT by decomposing the
-point DFT into a set of recursively related -point.

 FFT transform, if is power of r. In general, higher-radix
FFT algorithm has less number of complex multiplications
compared with radix-2 FFT algorithm which is the simplest
form in all FFT algorithms. In an example, for the 128-point
FFT, the number of nontrivial complex multiplications of
the radix-8 FFT algorithm is 152, which is only 59.3% of
that of the radix-2 FFT algorithm. Thus, in order to save the
number of complex multiplications, we choose the radix-8
FFT algorithm. Because the 128-point FFT is not a power
of 8, the mixed-radix FFT algorithm, including radix-2 and
radix-8 FFT algorithms, is needed.

V. algorIthm for dft comPutatIon

 Given a sequence, an N-point discrete Fourier transform
(DFT) is defined as

 N=128, n=64n1+n2 {n1=0,1 n2=0,1….63

 k=k1+2k2 {k1=0,1 k2=0,1….63

 x(k1+2k2)=x(64n1+n2)w16
(2k2+k1)

 x(64n1+n2)

 =BU2 (k1,n2) W64
n2k2

Fig.1 128-point mixed-radix FFT algorithm

 The mixed-radix 4/2 butterfly unit uses both the
radix-22 and the radix-2 algorithms can perform fast FFT
computations and can process FFTs that are not power of
four. The mixed-radix 4/2, which calculates four butterfly
outputs based on X(0)~X(3). The proposed butterfly unit has
three complex multipliers and eight complex adders. Four
multiplexers represented by the solid box are used to select
either the radix-4 calculation or the radix-2 calculation.

 In order to verify the proposed scheme, 64-points FFT
based on the proposed Mixed-Radix 4-2 butterfly with
simple bit reversing for ordering the output sequences is
exampled .For 64-points FFT is composed of total six-
teen Mixed-Radix 4-2 Butterflies. In the first stage, the 64
point input sequences are divided by the 8 groups which
correspond to n3=0, n3=1, n3=2, n3=3, n3=4, n3=5, n3=6,
n3=7 respectively. Each group is input sequence for each
Mixed-Radix 4-2 Butterfly. After the input sequences pass
the first Mixed-Radix 4-2 Butterfly stage, the order of output
value is expressed with small number below each butterfly
output line. The proposed Mixed- Radix 4-2 is composed
of two radix-4 butterflies and four radix-2 butterflies. In the
first stage, the input data of two radix-4 butterflies which are
expressed with the equation B4 (o, n3, k j) B4 (i, n3, k1), are
grouped with the x(n3), x(N/4±n3), x(N/2±n3), x(3N/4±n3)
and x(N/ 8±n3), x(3N/8±n3), x(5N/8±n3), x(7N/8±n3)
respectively. After the each input group data passes the
first radix-4 butterflies, the output data is multiplied by the

FFT/IFFT Processor for Ultra Wide Band Application

AJCST Vol.3 No.1 January - June 2014

32

special twiddle factors. Then, these outputted sequences
are inputted into the second stage which is composed of
the radix-2 butterflies. After passing the second radix-2
butterflies, the outputted data are multiplied by the twiddle
factors. These twiddle factors WQ (1+k) is the unique
multiplier unit in the proposed Mixed- Radix 4-2 Butterfly
with simple bit reversing the output sequences. Finally, we
can also show order of the output sequences. The order of
the output sequence is 0,4,2,6,1,5,3 and 7 which are exactly
same at the simple binary bit reversing of the pure radix
butterfly structure. Consequently, proposed mixed radix
4-2 butterfly with simple bit reversing output sequence
include two radix 4 butterflies, four radix 2 butterflies, one
multiplier unit and additional shift unit for special twiddle
factors.

VI. oPerand and twIddle factor storage

 The property of the FFT algorithms allows the input
operands and intermediate and final results, to share the
same memory locations. This, however, requires that the
input sequence is stored into the RAM memory according
to the input permutations. The in-place operand access
during the actual computations can be realized with the aid
of address rotation .In an N-point radix-2 FFT, there are
N/2 different complex-valued twiddle factors. However,
these factors can be computed from N/8+1 complex-valued
numbers with the aid of an add/sub unit .On the other hand,
there are N/4+1 different real-valued magnitudes present
in the real and imaginary parts, thus the twiddle factors
can be formed easily by fetching the magnitudes from a
table and taking complement when needed. However, this
arrangement requires that two memory accesses to the
ROM table are needed. This is possible with the proposed
pipelined butterfly units since the operand access takes
two cycles. The previous method can be applied directly
to butterfly units based on bit-parallel multipliers. The
DA based butterfly units require sum and difference of
the real and imaginary parts of the twiddle factors, thus an
additional add/sub unit is needed. Butterfly units based on
CORDIC need no ROMs since the angles can be generated
easily from counters synchronizing the overall operation.
In this paper, we have proposed a general organization for
partial-column radix-2 and radix-2/4 FFT processors and
described methods to improve the energy-efficiency of
pipelined butterfly units. Several pipelined butterfly units
have been synthesized onto a 0, 11 μm ASIC technology
and the results show that butterfly units based obit-parallel

multipliers are energy-efficient but cannot be used when
high clock frequencies are used. The energy efficiency of
these butterfly units can be further enhanced by utilizing
radix-4 operation. The proposed radix-2/4butterfly unit to
be the most energy-efficient choice, when the target clock
frequency is high. Butterflies based on distributed arithmetic
can support higher clock frequencies than the butterflies
based on bit-parallel multipliers. When extremely long FFTs
are needed, the pipelined CORDIC should be considered
due to the fact that separate twiddle factor ROMs are not
needed.

 Mixed radix algorithm, another modified version of
Cooley – Tuckey algorithm handle composite sizes. It
behaves like FFT for any series that can be factored in
factors 2, 3, 4, 5, 8 and 10. When there are other prime
factors in the series, it will calculate the subseries with a
complex Discrete Fourier Transform (DFT). The mixed-
radix FFT is just as fast as normal FFT for power of 2 series,
in all cases where the series can be composed of the factors
above. In other cases it will be slightly slower. In various
mixed radix architectures including mixed radix multipath
delay commutation, mixed radix single path delay feedback
and mixed radix combined delayed feedback commutation
are to be dealt with.

 The Mixed radix multipath delay commutation is a very
crucial architecture for FFT computation, and it combines
parallel pipelined concept and memory based architectures
so as to obtain power efficiency. The processor, based on the
multipath delay commutation architecture has high-radix
arithmetic units with two main memories for input storage,
inter mediate commutations, delays and output buffer for
rescheduling purposes.

 Here the 128 point FFT suited for UWB applications are
calculated using four parallel 32 point FFT. The architecture
shows the FFT computation for the 32 point FFT, which is
decomposed into radix 4 FFT and radix2 FFT. The switches
are more complex and it is implemented using multiplexers.
All these operations are controlled by the control unit and
the twiddle ROM is implemented using shift-add method of
twiddle factor computation. The twiddle ROM computation
is made by observing the unique twiddle factors and then
mapping the values according to the mapping. The radix
4 is implemented using Carry Save Adder. It is found that
Carry Save Adder, which is a fast adder, is having less delay
compared to other adders and hence this adder is imported
into the design to compute radix 4 algorithms. This design,

R.Radhika

AJCST Vol.3 No.1 January - June 2014

33

using mixed radix multipath delay commutation has four
complex multipliers, so it consumes more multiplier power.
To save the power consumption, a better implementation of
the 128 point FFT is made by using the concept of single
path delay feedback.

 In this project mixed radix multipath delay feedback is
used and to increase the throughput. Mixed radix algorithm
is a combination of different radix –r algorithm, the input
sequence and output sequence are in specified order. The
order of the output sequence is one bit reversal of the order
of the input signal. The 128 point mixed radix algorithm
is implemented to save power consumption and the higher
radix algorithm is used to reduce the number of complex
multiplication.

 In this section we describe a generalization of the basic
FFT that can be applied to a sample set where the size is
any composite (non-prime) number. We shall describe an
algorithm based on this idea in detail. Instead, only the
mathematical basis of the algorithm will be described.
The only real complexity in this algorithm is the indexing
scheme, which is far more difficult than the simple bit
reversing.

 Mixed radix algorithms are rarely used for signal
processing. For most signal processing applications, your
far better off designing your system with Radix 2 FFT’s in
mind (For example, chose your sampling frequency so that
a Radix 2 FFT will give you the resolution you want from
a spectrum analysis). The proposed MRMDF architecture
combining the features of the SDF and MDC architectures
consists of Module 1, Module 2, Module 3, conjugate
blocks, a division block, and multiplexers.

 In the MRMDF architecture, the input sequence and the
output sequence are in the specified order. The order of the
output sequence is the bit reversal of the order of the input
sequence, and the operation of the FFT or IFFT is controlled
by the control signal, FFT/IFFT when an IFFT is performed
in our processor, the sign of the imaginary part of the input
sequences will be changed and then they will be performed
by the process in treating FFT. The sign of the imaginary
part of output data from FFT will be changed again and
then will be divided by 128. Because 128 is a power of two,
the operation of the division is implemented by shifting
the decimal point location. The function of Module 1 is to
implement a radix-2 FFT algorithm, corresponding to the
first stage of the SFG. Modules 2 and 3 are to realize the

radix-8FFT algorithm, corresponding to the second and
third stages of the SFG ,as displayed.in Modules 2 and 3
to implement the radix-8 FFT algorithm. In addition, the
hardware complexity of the complex multiplier will be also
considered in the proposed architecture.

 1. Module 1: Module 1 consists of a register file which can
store 64 pieces of complex data, one butterfly unit (BU),two
complex multipliers, two ROMs, and some multiplexer.
The function of ROM is used to store twiddle factors. Only
period of cosine and sine waveforms are stored in ROM,
and the other period waveforms can be reconstructed by
these stored values. The BU consists of four BU2s, which
operate the complex addition and complex subtraction
from two input data. Because the radix-2 FFT algorithm is
adopted in this module, BU cannot start until both the input
sequences and are available. This corresponds to the first
stage of SFG.

 The order of the four parallel input sequences in Module
1 is, and respectively, where is from. Therefore, these
two available data of each data path are separated by 16
cycles if one input data of each path is available per clock
cycle. At the first 16 cycles, the first 64 data are stored in
the register file. At the next 16 cycles, the eight input data
and of the BU are received from the register file and the
input, respectively. Then the BU generates the outputs data
according to the radix-2 FFT algorithm. Meanwhile, four
output data, the BU, are fed to Module 2 directly, and the
other four output data are stored into the register file. After
32 cycles, these data are read from the register file and are
multiplied by the twiddle factors simultaneously before they
are sent to Module 2. In general, four complex multipliers
are needed in the four-parallel approach to implement the
radix-2 FFT algorithm. Also, the utilization rate of the
complex multiplier is only 50%. This paper proposes a
new approach to increase the utilization rate and to reduce
the number of complex multipliers. The detailed operation
is described below. When these are generated by the BU,
two are multiplied by the appropriate twiddle factors first
before these are stored in the register file. After 32 clock
cycles, other two and, are multiplied before the data’s are
fed to Module 2. By rescheduling the time of the complex
multiplications, it is clear to find that only two complex
multipliers are needed in our approach. The utilization of
the complex multipliers can achieve100% by using our
proposed approach.

2. Module 2: Module 2 consists of four BU8 structures and

FFT/IFFT Processor for Ultra Wide Band Application

AJCST Vol.3 No.1 January - June 2014

34

one modified complex multiplier. These four BU8s operate
in the same way. The architecture of BU8 is direct mapped
from the three-step radix-8 FFT algorithm. Also, the sizes of
the three delay elements in the BU 8 are eight, four, and two
points, respectively. The function of the delay element is to
store the input data until the other available input data are
received for the BU2 operation. The output data generated
by the BU2 in the first step and second step are multiplied
by a trivial twiddle factor, or before they are fed to the next
step. These twiddle factors can be implemented efficiently.
However, the four output data from the third step of the
BU8 need to be multiplied by the nontrivial twiddle factors
simultaneously in the modified complex multiplier.

 The scheduling of the twiddle factor in each data path
after the twiddle factors are mapped to region A. It can be
clearly seen that the twiddle factor of four paths in each time
slot has different values, except for time slots 2 and 3. In
time slots 2 and 3, the hardware conflict will happen if only
one constant multiplier 4 is built. Therefore, an additional
constant multiplier 4 is used in our design to avoid spending
one more cycle. In the beginning, the four output sequences
from the third step of the BU8 are separated into real and
imaginary parts. The data of each path are fed to appropriate
constant multipliers according to the scheduling of the
twiddle factor. Therefore, the entire constant multiplication
calculation can be implemented by just using eight sets of
constant values by swapping the real and imaginary parts
appropriately and choosing the appropriate sign. The gate
count of this approach can save about 38% compared to
the four-complex-multiplier approach, and the performance
of this approach is equivalent to that of the four complex
multipliers.

 3. Module 3: The radix-8 FFT algorithm is realized in
Module 3. The structure of Module 3 is different from that
of Module 2, because the two available data of the BU2 in
the second and third steps are in different data paths. Thus,
a suitable structure is needed to ensure the correction of the
FFT output data. Some output data, generated by the BU2 in
the first and second steps, are multiplied by the nontrivial
twiddle factors before they are fed to the next step.

 In general, the performance and hardware cost of the
pipelined FFT architecture are increased by using the
multiple data-path approach. Thus, the multipath-based
architecture usually provides higher throughput rate
with higher hardware cost if the parallel input data can

be supported in this approach .The proposed MRMDF
architecture hardware costs in terms of 128-point FFT are
as follows:

 • Registers number: 124.

 • Complex multipliers: where the complexity of
modified complex multiplier is only 62% of that of
four complex multipliers

 • Complex adders: 48.

 compares the hardware requirement, FFT algorithm,
and throughput rate with several classical and proposed
approaches in the 128-point FFT. The known MDC
architectures like R4MDC and the architecture proposed
by Jung are not suitable for the 128-point FFT in
UWB applications, because the FFT size used in their
approaches is limited by a power of 4. In order that these
two architectures are able to process the 128-point FFT,
we modify both architectures by adding the proposed
Module 1 to them. In addition, the throughput rate of the
traditional MDC architecture is raised by increasing the
utilization of butterfly units; this can be done by reordering
the appropriate parallel input data in the input buffer before
the data are loaded into the FFT processor. Consequently,
the revised R4MDC and Jung’s architectures. It should
be emphasized that the input buffer, whose size is usually
proportional to the number of data paths, is needed in all
FFT processors listed in except for our proposed MRMDF
architecture and R2 SDF architecture. By combining the
features of the R2 SDF and the R4MDC approaches, the
proposed FFT architecture not only can implement the
radix-8 FFT algorithm in a 128-point FFT to reduce the
number of complex multiplications but also can provide
four times the throughput rate, compared with the R2 SDF
scheme. In addition, the number so register excluding the
input buffer and complex multiplier used in our scheme is
only 38.9% and 44.8% of those in the SRMDC architecture.
Although the number of complex adders in our design is
greater than that in the others, the cost of complex adders
is much less than that of registers and complex multipliers,
respectively.

VII. future work

 After the appropriate word length of the proposed FFT/
IFFT processor is chosen, the architecture of the processor
was modelled in Verilog and functionally verified using
Verilog-XL simulator. The output data from the Verilog

R.Radhika

AJCST Vol.3 No.1 January - June 2014

35

coded architecture agreed with the output data of the FFT/
IFFT in UWB platform, which is coded by MATLAB. This
test chip of the 128-point FFT/IFFT processor is fabricated
in 0.18- m one-poly six-metal (1P6M) CMOS process.
Input data are stored serially in the test module from the chip
input pins before the operation of the processor. The test
module provides four complex data in parallel to the FFT/
IFFT processor core when the processor begins to work.
The highest throughput rate of our proposed architecture is
up to 1 Gsample/s with power dissipation of 175 mW at 250
MHz. According to the specifications of UWB system, the
throughput rate of the FFT/IFFT is 409.6 Msample/s. At the
working frequency of 110 MHz, the power consumption of
the FFT/IFFT processor is only 77.6 mW for 480 Mbs/s.

references

[1] A. Batraet et. al., “Multi-Band OFDM Physical Layer Proposal for
IEEE 802.15 Task Group 3a,” IEEE P802.15-03/268r3, Mar. 2004.

[2] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An
application specific DSP chip set for 100 MHz data rates,” in Proc.
Int.Conf. Acoustics, Speech, and Signal Processing, vol. 4, Apr.
1988, pp.1989–1992.

[3] S. He and M. Torkelson, “Designing pieline FFT processor for
OFDM (de)modulation,” in Proc. URSI Int. Symp. Signals,
Systems, and Electronics, vol. 29, Oct. 1998, pp. 257–262.

[4] J. O’Brien, J. Mather, and B. Holland, “A 200 MIPS single-chip 1 k
FFT processor,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers, vol.36, 1989, pp.

[5] B. M. Bass, “A low-power, high-performance, 1024-point FFT
processor,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 380–
387, Mar.1999.

[6] L. R. Rabiner and B. Gold, Theory and Application of Digital
SignalProcessing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[7] J. Garcia, J. A. Michel, and A. M. Burón, “VLSI configurable delay
Commutation for a pipeline split radix FFT architecture,” IEEE
Trans.SignalProcess. vol. 47, no. 11, pp. 3098–3107, Nov. 1999.

[8] W.-C. Yeh and C.-W. Jen, “High-speed and low-power split-radix
FFT,” IEEE Trans. Acoust., Speech, Signal Process, vol. 51, no. 3,
pp.864–874, Mar. 2003.

[9] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A new VLSI-oriented
FFT Algorithm and implement,” in Proc. IEEE Int. ASIC Conf.,
Sep. 1998, pp. 337–341.

[10] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point fourier
transform Chip for high-speed wireless lan application using
OFDM,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 484–493,
Mar. 2004.

[11] Y. Jung, H. Yoon, and J. Kim, “New efficient FFT algorithm and
Pipeline implementation results for OFDM/DM Tapplications,”
IEEETrans.Consum. Electron., vol. 49, no. 1, pp. 14–20, Feb. 2003.

FFT/IFFT Processor for Ultra Wide Band Application

AJCST Vol.3 No.1 January - June 2014

