
An Implementation of Tree Pattern Matching Algorithms
for Enhancement of Query Processing Operations

 in Large XML Trees
N. Murugesan1 and R.Santhosh2

1PG Scholar, 2Assistant Professor, Department of Computer Science and Engineering,

Karpagam University, Coimbatore, Tamil Nadu, India
E-mail: nmuruhesen@gmail.com

(Received on 25 December 2013 and accepted on 05 March 2014)

Abstract – Now-a-days XML has become a defacto standard

for storing, sharing and exchanging the information across the

various domains. Interoperability is achieved using XML. Due

to the increasing popularity of XML enterprises are generating

and exchanging the data across the various domains. This paper

presents	a	wide	analysis	to	identify	the	efficiency	of	XML	Tree	

pattern matching algorithms. Previous years many methods

have	been	proposed	to	match	XML	Tree	queries	efficiently.	In	

particularly TwigStack , OrderedTJ, TJFast and TreeMatch

algorithms. All algorithms to achieve something through these

own ways like structural relationship including Parent-Child

(P-C) relationship (denoted as ‘/’) and Ancestor-Descendant (A-

D) relationships (denoted as ‘//’) and more. Finally, we report

our results to show that which algorithm is superior to previous

approaches in terms of the performance.

Keywords: XML, TreeMatch, TwigStack, XQuery, XPath

I. IntroductIon

 Data mining is the process of analyzing data from different
perspectives and summarizing it into useful information. In
this project mining is applied to gain knowledge for large
amount of XML Datasets. XML has become ubiquitous
language sharing, storing and exchanging information across
various platforms. XML documents can be represented as
a Tree structure using DOM Parser. DOM Parser is mainly
used to store, access or manipulate the XML Tree. XQuery
(XML Query Language) and XPath (XML Path Language)
are traditional XML query languages to query the XML Data.
Our existing system provides answers to the queries using
these query languages. These query languages requires some

AJCST Vol.3 No.1 January - June 20141

complex notations to perform query processing. XQuery
and XPath are powerful but unfriendly to non-expert users.
Existing system uses TwigStack Algorithm to perform query
answering. But, TwigStack algorithm provides answers to the
queries containing P-C (Parent-Child) and A-D (Ancestor-
Descendant) relationships. This causes sub-optimality
problem in proposed system we are using keyword query
to perform query answering. A Holistic XML Tree Pattern
Matching Algorithm called TreeMatch is used to overcome
the sub-optimality problem faced by the existing system.
This algorithm is based on the concept of extended Dewey
Labeling. According to the Labeling Scheme the root node,
children, grand children are associated with the number or
label. For instance 0 is assigned to the root node. The children
of the root gets labeling such as 0.0, 0.1. The grand children
of the first parent node start with 0.0.0 and continue like 0.0.1
etc.

II. related work

 Several research papers have studied in the area of XML
Tree Pattern Matching and the surveys of those papers have
been presented here.

 J.T.Yao, M.Zhang (2013) have proposed a holistic
algorithms for XML Query Processing. The novel holistic
XML twig pattern matching method called TwigStack which
avoids storing intermediate results unless they contribute
final results. The major advantage of this method is that it
avoids computation of large redundant intermediate results.
But main limitation of TwigStack is that it may produce large
set of “useless” intermediate results when queries contain

Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.3 No.1, 2014, pp.1-5

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2014.3.1.1733

AJCST Vol.3 No.1 January - June 2014 2

N. Murugesan and R.Santhosh

parent child relationship. TwigStack has been proved optimal
only for queries with A-D edges and it still cannot control
the size of intermediate results for queries with P-D edges.
TwigStack operates in two steps.

1. A list of intermediate path solutions is output as
intermediate results and

2. The intermediate path solutions in first step are merge-
joined to produce the final solutions.

 Xiaoying Wu, Stefanos Souldatos (2011) have proposed
MPMGJN (multi-predicate Merge-Join) algorithm and
typically this algorithm consists of decomposition-matching
and merging process:

• Decompose the tree pattern into linear patterns
which might be binary (parent-child or ancestor–
descendant) relationships between pairs of nodes or
root-to-leaf paths.

• Find all matching’s of each linear pattern

• Merge-join them to produce results.

• MPMGJN varies from TwigStack merge join
algorithm is that it requires multiple scans of input
list.

 Li et al. and Chien et al. (2011) have proposed Stack-Tree
Algorithm which mainly used to overcome the drawbacks
of MPMGJN algorithm. The major drawback of MPMGJN
algorithm is that is requires multiple scan of input list whereas
Stack-Tree algorithm needs only one scan of the input lists.
Stack Tree algorithm uses stacks to maintain the ancestor or
parent nodes. Stack Tree Algorithm works for both P-D and
A-D edges.

 Jaihaeng Lu (2010) has proposed OrderedTJ Algorithm
which is mainly used to overcome the drawbacks of
decomposition-matching-merging algorithms. In OrderedTJ
algorithm an element contributes to final results only if the
order of its children accords with the order of corresponding
query nodes. If we call edges between branching nodes and
their children as branching edges then denote the branching
edge connecting to the nth child as the nth branching edge.
OrderedTJ is I/O optimal among all sequential algorithms

that read entire input. In other words, the optimality of
OrderedTJ allows the existence of parent-child edges in non-
branching edges and the first branching edge. OrderedTJ
algorithm output much less intermediate results, OrderedTJ
increases linearly with the size of the database; OrderedTJ is
not optimal and outputting less intermediate results.

 Al-Khalifa et al. (2007) have proposed TJFast algorithm
to overcome the drawbacks of containment labeling scheme.
While containment labeling scheme preserves the positional
information within the hierarchy of an XML Document but
some limitations of containment labeling scheme are

• The information contained by a single containment
label is very limited. For example, we cannot get
path information from any single containment label.

• Wildcard are widely used in XPath and it cannot be
supported by the containment label scheme.

 The containment label scheme is difficult to answer
queries with wildcards in branching nodes. TJFast does not
produce the individual solution for each node when there are
multiple return nodes for the query. TJFast cannot work with
ordered restriction and negation function.

 Wen-Chiao Hsu (2007) has proposed CSI-X technique to
speed up the query evaluation in XML documents. CIS-X
mainly used to overcome the drawbacks of decomposition-
matching-merging algorithms to process XML Path
expressions. According to decomposition-matching-merging
algorithms a query is decomposed into several sub-queries,
each of which is separately executed and its intermediate
results stored for further processing. However these methods
still have drawbacks of producing large intermediate
results and time-consuming merging processing. So in this
paper CIS-X technique has been proposed which support
for complex XQueries. But the drawback with the CIS-X
Technique is that it takes more time for index construction.

 K. Kubota, Y. Kanemasa (2006) have proposed a new
algorithm called Twig Square Stack which mainly used to
eliminate the merging costs in second phase. Twig Square
Stack is a one phase algorithm which can process path
matching efficiently and avoids the high cost of merging
phase. The overall solutions are stored in hierarchical stacks

AJCST Vol.3 No.1 January - June 20143

An Implementation of Tree Pattern Matching Algorithms for Enhancement of Query
Processing Operations in Large XML Trees

and the final solutions can be output by applying a simple
enumeration function. However the data structures are too
complex and expensive to maintain.

 X. Wu, D. Theodoratos (2005) have proposed an
algorithm TwigList which is a refined version of Twig Square
Stack, utilizing a much simpler data structure, a set of lists to
store solutions. TwigList has advantages over Twig Square
Stack but has same shortcomings. One drawback is that all
the potential nodes related to QP (Query Processing) will
be pushed into and popped from the temporary stack, even
though some of them are not part of the solution. Another
drawback is they have less ability to efficiently discard
useless nodes.

 S. Al-Khalifa, H.V. Jagadish (2009) have proposed
Structural Join methods to process twig pattern matching.
In the first phase, a twig query is decomposed into several
binary P–C or A–D relationships. Each binary sub-query is
separately evaluated and its intermediate result is produced.
The final result is formed by merging these intermediate
results in the second phase. This method generates a huge
number of intermediate results that may not be part of the
final results. In addition, the phase of merging is expensive.

 Jihaeng Lu et al. (2011) have proposed TreeMatch
algorithm which is mainly used to solve the problems of
existing Algorithms for Twig Pattern Matching. TreeMatch
provides optimal results for queries by eliminating useless
intermediate results. The sub-optimality problem faced by
the existing system is solved by using Tree Match Algorithm.
This algorithm is based on the concept of extended Dewey
labeling. As per the labeling scheme the root node, children,
grand children are associated with number or label. For
instance label 0 is assigned to the root node, children of
root gets labeling such as 0.0, 0.1 and the grand children
of the first parent node start with 0.0.0 and continue like
0.0.1.TreeMatch Algorithm mainly used for searching large
XML Tree Patterns. The efficiency of the tree match is better
when compared with other algorithms.

III. exIstIng system

 Existing System uses Traditional XML Query languages
like XQuery and XPath to perform query processing in an
XML File. Existing System used TwigStack Algorithm to

make pattern matching. TwigStack Algorithm provides
answers to queries containing P-C and A-D relationships.
P-C edges are denoted by (/) and A-D edges are denoted by
(//). The TwigStack Algorithm is a decomposition-matching
and merging algorithm. According to this algorithm a query
is decomposed into several sub-queries. Each sub-query is
executed separately and intermediate results are stored for
further processing. The final result is obtained by merging
these intermediate results. TwigStack Algorithm provides
useless intermediate results for queries containing P-C
relationships and it controls the size of intermediate result
for queries containing A-D relationship. The TwigStack
algorithm is described by the following:

 // Phase 1

1: while notEnd (q)

2: qact = getNext (q)

3: if (isNotRoot (qact)) then

4: cleanStack (parent (qact), nextL (qact))

5: end if

6: if (isRoot (qact) or isNotEmpty (Sparent (qact))) then

7: cleanStack (qact, next (qact))

8: moveStreamToStack (Tqact, Sqact, pointertotop (Sparent
(qact)))

9: if (is Leaf (qact)) then

10: showSolutionsWithBlocking (Sqact, 1)

11: pop (Sqact)

12: end if

13: else

14: advance (Tqact)

15: end if

16: end while

 // Phase 2

17: mergeAllPathSolutions ()

 Algorithm TwigStack operates in two phases. In the first
phase (lines 1-16), some (but not all) solutions to individual
query root-to-leaf paths are computed. In the second phase
(line 17), these solutions are merge-joined to compute the
answers to the query twig pattern.

4

A. Drawbacks of An Existing System

 The major drawbacks of an existing system are described
below:

• XQuery and XPath is complicated to understand by
non-database users.

• XQuery and XPath are not user friendly to non-
expert users.

• Query Answering becomes little bit complicated
using XQuery and XPath.

• TwigStack Algorithm fails to control the size of
useless intermediate results.

VI. ProPosed system

 In proposed system keyword search is used to perform
query processing in an XML Tree. Keyword Search is an
simple and yet familiar to most of the internet users as it
requires only the input of keywords. An XML Tree Pattern
Matching algorithm called TreeMatch is used in the proposed
system which is mainly used to overcome the drawbacks
of the TwigStack Algorithm. In proposed system the exact
matching is performed for users query not only for text but
also for images, audio, video. TreeMatch algorithm is based
on the concept of extended Dewey Labeling. According to the
Labeling Scheme the root node, children, grand children are
associated with the number or label. For instance 0 is assigned
to the root node. The children of the root gets labeling such as
0.0, 0.1. The grand children of the first parent node start with
0.0.0 and continue like 0.0.1 etc. The TwigStack Algorithm is
illustrated as follows:

1: locateMatchLabel (Q);

2: while(endroot)) do

3: fact= getNext(topBranching Node);

4: if (fact is a return node)

5: addToOutputList (NAB(fact ,cur(Tfact));

6: advance (Tfact); //read the next element in Tfact

7: updateSet (fact); //update set-encoding

8: locateMatchLabel (Q); //locate next element with
matching path

9: emptyAllSets (root);

 Line 1 locates the first element whose paths match
individual root-leaf path pattern. In each iteration, a leaf
node fact is selected by getNext function (line 3). The purpose
of line 4, 5 is to insert the potential matching elements to
outputlist. Line 6 advances the list Tfact and line 7 updates the
set encoding. Line 8 locates the next matching element to the
individual path. Finally, when all data have been processed,
we need to empty all sets in Procedure EmptyAllSets (Line 9)
to guarantee the completeness of output solutions.

 The proposed system does not require complex
query languages like XPath and XQuery. TreeMatch
Algorithm matches with the extended Dewey Label for given
query and then completes the query processing. Processing
time of the TreeMatch Algorithm is less when compared
to the decomposition-matching and merging algorithms.
TreeMatch algorithm does not produce useless intermediate
results. Thus by introducing TreeMatch Algorithm it takes
less processing time. The major advantage of the TreeMatch
Algorithm is that it solves the sub-optimality problem.

V. exPerIments and results

 The concept of TwigStack algorithm has been tested with
the help of an open source tool called XPath Builder. XPath
Builder is mainly used to generate XPath Expressions.

Fig.1 Execution of Queries containing P-C relationship. Large useless
intermediate results for queries containing P-C relationships

AJCST Vol.3 No.1 January - June 2014

N. Murugesan and R.Santhosh

5

Fig.2 TwigStack Algorithm Reducing useless intermediate
results for A-D edges

Fig.3 TreeMatch Algorithm Reduces useless intermediate results and makes
query processing easy

 Thus from our experimental our experimental results we
conclude that TwigStack algorithm produces useless interme-
diate results where as the proposed holistic XML Tree Pattern
Matching algorithm solves this sub optimality problem. Thus
we have proved that TreeMatch Algorithm for XML Tree
Pattern Matching is the best algorithm for performing query
processing in a Large XML Trees.

references

[1] Mirjana Mazuran, Elisa Quintarelli, and Letizia Tanca, “Data Mining
for XML Query Answering Support”, IEEE Transactions on Knowledge
and Data Engineering, 2012.

[2] Jiaheng Lu, Tok Wang Ling, Zhifeng Bao and Chen Wang, “Extended
XML Tree Pattern Matching Theories and Algorithms”, IEEE
Transactions on Knowledge and Data Engineering, 2011.

[3] Jiaheng Lu, “Ordered and Generalized XML Tree Pattern Processing”,
Springer Journal, 2013,pp-120-145.

[4] M.Hachicha, “A survey on XML Tree Pattern”, IEEE Transactions on
Knowledge and Data Engineering, 2013.

[5] Choi.B, Mahoui.M and Wood, “On the optimality of the holistic twig
join algorithms”, Proc. of DEXA, 2003,pp. 28-37.

[6] Ling.T.W, Chan.C and Chen.T, “On efficient processing of CML Twig
Pattern Matching”, in VLDB, 2007, pp.193-204.

[7] Chen Wang.J,Naughton, “On supporting containment Queries
in relational data base management systems”, Proc.of SIGMOD
Conference, 2006, pp.274-285.

[8] Chien.S, Vagena.Z, Zhang.D, and Tsotras, “Efficient structural joins on
indexed XML documents”, Proc .of VLDB, 2002, pp.263-274.

[9] Jianhua Feng, “Efficient fuzzy type ahead searches in XML data”,IEEE
Transactions on Knowledge and Data Engineering, 2012.

[10] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D.
Srivastava, “Structural joins: A primitive for efficient XML query
pattern matching”, In ICDE, February 2002, pp. 141–152.

AJCST Vol.3 No.1 January - June 2014

An Implementation of Tree Pattern Matching Algorithms for Enhancement of Query
Processing Operations in Large XML Trees

