
Innovative Method of Software Testing Environment in
Cloud Computing Technology

S. Ravichandran1 and M. Umamaheswari2

1Research Scholar in Department of Computer Science, Bharathiar University, Coimbatore, India
2Prof. & Dean in Department of Information Technology, RRASE College of Engineering, Chennai, India

E-mail: ravi17raja@gmail.com, karpagaravi15@gmail.com, druma_cs@yahoo.com
(Received 2 September 2014; Revised 20 September 2014; Accepted 5 October 2014; Available online 12 October 2014)

Abstract - Various information systems are widely used in
information society era, and the demand for highly dependable
system is increasing year after year. However, software testing
for such a system becomes more difficult due to the enlargement
and the complexity of the system. In particular, it is too difficult
to test parallel and distributed systems sufficiently although
dependable systems such as high-availability servers usually
form parallel and distributed systems. To solve these problems,
to propose a software testing environment for dependable
parallel and distributed system using the cloud computing
technology, named D-Cloud. D-Cloud includes Eucalyptus as
the cloud management software, and FaultVM based on
QEMU as the virtualization software, and D-Cloud frontend
for interpreting test scenario. D-Cloud enables not only to
automate the system configuration and the test procedure but
also to perform a number of test cases simultaneously, and to
emulate hardware faults flexibly. In this paper, present the
concept and design of D-Cloud, and describe how to specify the
system configuration and the test scenario. Furthermore, the
preliminary test example as the software testing using D-Cloud
was presented. Its result shows that D-Cloud allows to set up
the environment easily, and to test the software testing for the
distributed system.

Keywords: D-Cloud, QEMU, Eucalyptus, FaultVM,

FAUmachine, IaaS.

I.INTRODUCTION

According to shifting advanced information society,
various information systems are used everywhere. Since
such systems are closely related to daily life, they must
employ highly dependable facilities to avoid undesirable
behavior caused by the underlying bugs and the
interference from the external environment. In order to
certificate the depend-ability of such systems, these should
be tested sufficiently. However, as recent information
system becomes larger and more complicated, software
testing for such a system be-comes more difficult. In
order to check whether components work correctly,
tremendous test cases are needed for various input patterns
and environment to execute a great number of tests

immediately should be provided. Especially, although
highly dependable systems such as high-availability
servers likely to form parallel and distributed systems, the
testing of large-scale parallel and distributed system is
troublesome job in real world after deployment. When a

failure occurs in parallel and distributed systems, the
reproducibility of the actual system is so poor that the
detection of the defective part has been serious problem.
On the other hand, a highly dependable system should be
equipped with the combination of multiple functions of
fault tolerance against hardware faults. Even though
testing of fault tolerant facilities should be done under
hardware fault conditions or anomaly loads, i t is too
difficult to destroy a specific part of actual hardware or to
concentrate an unrealistic overload in a hardware device.
To solve these problems, proposed a software testing
environment for reliable distributed systems using cloud
computing technology, named “D-Cloud.

II. CONCEPT OF D-CLOUD

A large-scale software testing environment using cloud
computing technology for dependable distributed systems,
named “D-Cloud.” In this section, describe the concept of
D-Cloud including the background of this research. In
present information society, as the system scale enlarges
and it complicates the behavior of the system, sufficient
software testing has become increasingly harder. Since each
test consumes the actual execution time depending on the
software size and complexity, and the only way for
speedup of software testing process is that a lot of tests
should be performed in massively parallel. In order to
manage massive computing resources, introduce the cloud
computing infrastructure to the software testing.
Meanwhile, the demand for highly dependable system is
increasing year after year. In a highly dependable system,
fault tolerance is important capability so that the system
can tolerate hardware failures and anomaly behaviors.

 Parallel and distributed systems can provide the
solution by the redundant resources because of
multiprocessor and multiple nodes. However, in this case,
the software testing has several serious problems. First, since
each process runs in parallel independently, the behavior
of the software may become nondeterministic on the
actual hardware. I t means that it is too difficult to
reproduce the same failure after a failure occurred on such
a system. Toward this problem, virtual machine
technology helps the reproducibility by adding the
management mechanism for the time synchronization.
Second, in the case of a large-scale distributed system, to
build the test environment becomes impossible. In order
to test such a system, usually the preliminary test with

AJCST Vol. 3 No. 2 July - December 2014 34

 Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.3 No.2, 2014, pp.34-39

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2014.3.2.1738

restriction is done in the small-scale system, and then the
comprehensive test under the full-scale environment is
conducted. On this point, the cloud services based on IaaS
(Infrastructure as a Service) also provide an answer, that is,
they permit the use of huge number of computing nodes,
and the emulation of entire system without the
modification of the source codes using a virtual machine
on each node. The solution of this problem is to use virtual
machine technology to provide the fault injection facility,
and it can emulate hardware faults of several devices
within the virtual machine according to the request from
the tester.

 Fig.1. Structure of D-Cloud

Based on above discussions, D-Cloud aims for the real-
ization of the software testing environment as follows:

1) By the use of computing resource provided by the

cloud computing system, a number of test case can be
performed simultaneously, thus software testing can be
accelerated.

2) By the description of the system configuration and
test scenario, a series of complex test procedure can
be automated.

3) Hardware fault and anomaly state can be emulated
flexibly as many times as needed.

4) The target parallel and distributed system can be built
onto the cloud computing system, and the execution of
the system on the cloud helps the detection of the
timing bug and the reproduction of the failure.

 In providing various properties of dependability, since an
operating system plays a key role, to develop a dependable
operating system, which is based on Linux with safe
extension mechanism for adding dependable feature as
kernel modules, and to provide several components as
loadable kernel modules, daemons, and tools. D-Cloud is
also useful for the testing of dependable systems using a
dependable operating system.

III. D-CLOUD SOFTWARE TESTING ENVIRONMENT

To develop a D-Cloud for software testing environment,
D-Cloud consists of multiple virtual machine nodes, which
execute guest operating systems with fault injection, a
controller node, which controls all of the guest operating
systems, and a frontend, which manages the hardware and
software configurations and the test scenarios. Figure 1
shows the structure of D-Cloud.

A. Virtual machine with fault injection facility

In D-Cloud, it has been implementing FaultVM based
on QEMU as the virtualization software by adding the
fault injection facility. The advantages of using QEMU are
described below.

a. QEMU is open-source software. This allows the
modification to the emulation codes of the device
for adding the fault injection facility, and the
improvement for the reproducibility by adding the
management of time synchronization.

b. QEMU can support various processor
architectures. Especially, emulators for several
embedded processors such as ARM and SH are
already available.

c. QEMU can emulate a number of hardware

devices. Thus QEMU may treat several
hardware faults in the guest OS

.
B. Management of computing resources using Eucalyptus

In order to execute many tests simultaneously, a large
amount of resources must be managed efficiently and
flexibly. Therefore, introduce Eucalyptus as the cloud
management software. Eucalyptus is a cloud computing
infrastructure that manages machine resources flexibly
using a virtual machine, and an open-source
implementation having the same API as AmazonEC2.

The roles of Eucalyptus in D-Cloud are shown as
follows:

 Management of various guest OS images on the

controller node
 Transfer of the specified guest OS images from the

controller node to appropriate QEMU nodes
 Beginning and completion of guest operating

systems on QEMU nodes
By these features, the tester does not need to be aware of
the allocation for computing resources provided by D-
Cloud.

C. Automated system configuration and testing

D-Cloud automates the system setup and the test
process, including the fault injection, based on a scenario
written by a tester. “D-Cloud frontend” manages guest
operating systems, configures system test environments,

Innovative Method of Software Testing Environment in
Cloud Computing Technology

AJCST Vol. 3 No. 2 July - December 201435

transfers various data from the tester to guest operating
systems for the execution of testing, and collects testing
results from guest operating systems.

D-Cloud frontend performs the following acts:

1. Reception of a test scenario, a test program, input
data, and a script including execution commands
from a tester

2. Interpretation of the test scenario written in XML
3. Transfer of the test program, the input data, and

the script to the guest operating system
4. Issue of the request for the startup of a guest

operating system to the Eucalyptus controller node
5. Issue of the fault injection command for the target

guest operating system to the appropriate virtual
machine

6. Collection of the output data, logs, and snapshots
from the guest operating system.

IV. DESCRIPTION OF SYSTEM

CONFIGURATION AND TEST SCENARIO

As described above, D-Cloud performs preparation and
test according to a scenario written in XML. By
providing multiple scenario files, various systems can be
tested simultaneously. Furthermore, since the cloud
controller manages the computing resources appropriately,
the tester can submit the test items one after another
regardless of available computing resources.

Testing scenario statement consists of four parts as

follows.
 m a c h i n e D e f i n i t i o n : Descriptions for the

hard-ware configuration
TABLE 1 M A C H I N E D E F I N I T I O N E L E M E N T

Element name Meaning
machine Delimiter for definition of the hardware
name Name definition of the hardware environment
Cpu Number of CPUs
Mem Size of memory
N i c Number of NICs
I d ID of the used OS image

TABLE 2 SYSTEMD E F I N I T I O N E L E M E N T

Element name Meaning
system Delimiter for definition of

the software environment
name Name of the software environment
host Delimiter of the testing host
hostname Name of the host
machinename Name of the used machine element
c o n f ig Designation of the configuration file

 s y s t e m D e f i n i t i o n : Descriptions for the
software environment

 i n j e c t i o n D e f i n i t i o n : Definitions of faults
for injection

 t e s t D e f i n i t i o n : Procedures of the entire test

A. Configuration for the hardware environment

The description of the hardware configuration is given
by the “machineDefinition” element. Table I lists the
contents of the “machineDefinition” element. All
hardware components used in the test must be defined by
each “machine” element. The “machine” element must
include five elements, “name,” “cpu,” “mem,” “nic,” and
“id.” The “name” is referred in the “systemDefinition”
element described in the following sub-section. The
“cpu” and “nic” indicate the number of CPUs and NICs,
respectively, and “mem” represents the allocation size of
the main memory. The “id” element designates the
identifier for the system image to be used. Eucalyptus
provides each system image with a unique identifier in
the cloud system, and the identifier is also used in D-
Cloud.

B. Setting for the software environment

The description of the software environment is given
by the “systemDefinition” element containing elements
shown in Table I I . The en t i r e software environment
used in the test must be defined by each “system”
element. The “system” element must include two
elements, “name” and “host.” The “name” is referred in
the “testDescription” element. Moreover, the “host”
element contains three elements, “host-name,”
“machinename,” and “config.” The “hostname” de-
termines the name of the host, the “machine name” is
selected from the “name” of “machine” within the “ma-
chineDefinition” element. The “config” designates a file
containing the various kinds of parameters.

C. Definition of fault injection and Description for the
automatic test procedures

The definition of fault injection items is given in the
“injectionDefinition” element containing elements shown
in Table III . I t may have multiple “injection” elements,
each of which has a “name” element and multiple “fault”
elements. The “injection” element is assigned to each
fault injection event. The “name” is referred in the
“testDescription” element. The “fault” element must
include four elements, “location,” “target,” “kind,” and
“time.” The “location” and “target” specify the target
device type and device name to inject a fault,
respectively. The “kind” indicates the selection of fault
injection elements listed in Table I V . The “time”
represents the duration of fault injection.

S. Ravichandran and M. Umamaheswari

AJCST Vol. 3 No. 2 July - December 2014 36

TABLE 3 INJECTIOND E F I N I T I O N E L E M E N T

Element name Meaning

i n j e c t i o n Delimiter for definition of the fault injection

name Name definition of the fault injection

F a u l t Delimiter for configuration of the injection

l o c a t i o n Designation of device type

t a r g e t Designation of target device

k i n d Type of fault

t ime Duration of the fault event

TABLE 4 TYPES OF FAULT INJECTION
Device Fault Value
Hard disk

Specified sector returns error
Specified sector is read-only
Error is detected by ECC
Received data contains error
Response of disk becomes slow

bad block
read-only
ecc
c o r r u p t
slow

Network
1bit error of packet
2bit error of packet
Error is detected by CRC
Packet loss
NIC is not responding

1 b i t
2 b i t
c r c
l o s s
n i c

Memory Bit error
Byte at specified address contains error

B i t
By te

The execution of the test is described in the “testDefi-
nition” element using the contents shown in Table V.
The “run” element is used for the independent test
definitions, and multiple “run” elements may exist in a
“testDefinition” element. The “name” element defines
the name of the system test to be performed. The output
file containing test result is created with the file name
based on the content of “name” element. The
“systemname” indicates the name in the
“systemDefinition” element. The “halt” element with
“when” attribute decides the finish time of the entire
system test. The “script” element includes four elements,
“on,” “putFile,” “exec,” and “inject” for each needed
host. The “on” specifies the host name defined in the
“systemDefinition” element. The “putFile” and “exec”
specify the file name for the transfer to the host and the
execute command.

TABLE 5 TESTDEFINITION ELEMENT
Element name Meaning
Run Delimiter for definition of the test scenario
Name Name of the test scenario
systemname Name of the used system element
H a l t Ending time of the test
S c r i p t Delimiter for definition of the execution
On Execution host
p u t F i l e File transmitted to the guest OS
Exec Designation of the script file

including the execution commands
I n j e c t Execution of the fault injection

V. PRELIMINARY TEST EXAMPLE USING

D-CLOUD

Preliminarily evaluate D-Cloud by testing the actual
dependable system. It have proposed and developed a fault
tolerant and high-performance interconnection network
based on the multi-link of Gigabit Ethernet (GbE) named
RI2N (Redundant Interconnection with Inexpensive
Network) Here, to assume simplified system using RI2N.
Client1 is connected with server1 by two Ethernet links,
network0 and network1. In this case, network0 and
network1 form the RI2N logical link. Network2 is also
available for issuing the command from D-Cloud
frontend to each node and the collection of measurement
results to D-Cloud frontend. Moreover, to assume the test
scenario as follows:

1) Client 1 performs burst data transfer to server 1

using RI2N continuously. In this case, throughput
is expected to be twice as high as single link.

2) After 200 seconds from the power-on, the network
interface “eth0” of client1 is down during 60 sec-
onds. RI2N link will be down immediately,
however, throughput should recover to the level of
the single link after a few seconds.

3) After that, “eth0” interface on client1 is alive
again. RI2N will detect the link recovery, and
throughput should recover to the same level as in
the beginning condition.

4) Finally, the system is halted 300 seconds after the
power-on.

Fig.2 Simplified system example using R12N

Innovative Method of Software Testing Environment in
Cloud Computing Technology

AJCST Vol. 3 No. 2 July - December 201437

Based on this scenario, the description by XML can be
denoted. It is notable that step 2 can be expressed as the
fault injection of the packet loss against eth0 of client1.

VI. RELATED WORK

Recently, Large-scale software testing has been studied.
GridUnit executes software tests automatically on the grid
by distributing the execution of JUnit test suites with
minimum user intervention. GridUnit is naturally limited
to the execution of JUnit test code by Java. When test
nodes are crashed and stopped in GridUnit, they cannot
execute remaining program tests. ETICS also provides au-
tomated test environments for grid and distributed
software on a grid computing platform using Condor as a
workload management system. Unlike D-Cloud concept,
uses a cloud computing environment, and enables to create
and execute VM instances for program tests through a web
portal. Cloud is proposed as a cloud computing facility for
software testing, and performs parallel symbolic execution
based on the source code. On the other hand, fault
injection techniques in program tests have been proposed.
DOCTOR is a software fault injector, which supports
memory faults, CPU faults, and communication faults.
Although software fault injection needs modification of
the source codes to be tested, this approach need not
modify the source codes at all for fault injection.
FAUmachine performs a software test using virtual
machines for fault injection mechanism. However, since
FAUmachine does not provide an automated test
environment, the tester must configure the test environment
manually.

Fig.3 Current Management Screen of D-Cloud

Fig.4. Test Results obtained by D-C loud

VII. CONCLUSION

To present the concept and design of the software testing
environment using the cloud computing technology, named
D-Cloud. D-Cloud permits the automatic configuration,
testing with fault injection along the description of the
testing scenario. It have been developing D - Cloud using
Eucalyptus as a cloud management software and QEMU
as a virtualization software. As the software testing using
D-Cloud, the preliminary test example was denoted, and
the result demonstrated that D-Cloud allows to set up the
environment easily, and to test the software testing for the
distributed system. At present, D-Cloud can obtain the
testing results including the virtual console logs and the
syslog outputs by the running processes and operating
system in FaultVM/QEMU on each node. In general use, it
should consider more sophisticated way to gather the results
and detect the fault from large amount of logs. In future
work, it should append the management mechanism to D-
Cloud for keeping reproducibility by time synchronization
in coarse grain among related virtual machines without
sacrificing the performance.

Further, to introduce the model simulator written

by the system description language to D-Cloud in order to
test various systems including embedded systems with
proprietary hardware’s. In proposed DS-Bench as a
dependability benchmarking framework for a dependable
operating system. To demonstrate the part of the web
interface for the management of test scenarios in D-Cloud,
and it shows that three test scenarios (nic0.xml, nic1.xml,
and nic2.xml) are running simultaneously on D-Cloud. D-
Cloud is so useful as the virtual platform for DS-Bench
since anomaly loads can be generated automatically from
the request given by the scenario file using D-Cloud.

ACKNOWLEDGMENT

The authors are thankful to T. Banzai, H. Koizumi, R.

Kanbayashi, T. Imada, H. Kimura, T. Hanawa, M. Sato
and my guide for providing the necessary facilities for
the preparation of the paper. Also thanks to AJCST
staffs to publish this paper. At last, I extend my heartfelt
salutations to our beloved Parents, my Wife and to the
almighty to establish this paper in successful manner.

REFERENCES

[1] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, H.

Kimura, T. Hanawa, and M. Sato, “D-Cloud: Design of a
software testing environment for reliable distributed
systems using cloud computing technology,” in Proc. 2nd
International Symposium on Cloud Computing (Cloud 2010)
in conjunction with CCGrid2010, May 2010, (To be
appeared).

[2] Toshihiro Hanawa, Takayuki Banzai, Hitoshi Koizumi, Ryo
Kanbayashi, Takayuki Imada, and Mitsuhisa Sato “Large-Scale
Software Testing Environment using Cloud Computing
Technology for Dependable Parallel and Distributed Systems”
Department of Computer Science Center for Computational
Sciences University of Tsukuba

S. Ravichandran and M. Umamaheswari

AJCST Vol. 3 No. 2 July - December 2014 38

[3] Y. Ishikawa et al., “Towards an open dependable operating
system,” in Proc. 12th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing, Mar. 2009, pp. 20–27.

[4] Nurmi et al., “The eucalyptus open-source cloud-computing
system,” in Proc. 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid ’09), 2009, pp.
124–131.

[5] Amazon elastic compute cloud (Amazon EC2). [Online].
[6] available: http://aws.amazon.com/ec2/
[7] Duarte, W. Cirne, F. Brasileiro, and P. Machado, “GridUnit:

software testing on the grid,” in Proc. 28th international
conference on Software engineering (ICSE ’06), 2006, pp. 779–
782.

[8] S. Miura, T. Hanawa, T. Yonemoto, T. Boku, and M. Sato,
“RI2N/DRV: Multi-link Ethernet for high-bandwidth and fault-
tolerant network on PC clusters,” in Proc. The 9th Workshop on
Communication Architecture for Clusters (CAC) in IPDPS,
May 2009.

[9] M.-E. Begin et al., “Build, configuration, integration and testing
tools for large software projects: ETICS,” in Proc. Rapid
Integration of Software Engineering Techniques, ser. Lecture
Notes in Computer Science, vol. 4401, Sep. 2007, pp. 81–97.

[10] Open Solaris test farm. [Online]. Available:
http://opensolaris. org/os/community/testing/testfarm

[11] S. Han, K. Shin, and H. Rosenberg, “DOCTOR: an integrated
software fault injection environment for distributed real-time
systems,” Computer Performance and Dependability
Symposium, International, p. 0204, 1995.

[12] S. Potyra, V. Sieh, and M. D. Cin, “Evaluating fault-tolerant
system designs using FAUmachine,” in Proc. 2007 workshop
on Engineering fault tolerant systems (EFTS ’07), 2007, p. 9.

[13] S. Han, K. Shin, and H. Rosenberg, “DOCTOR: an integrated
software fault injection environment for distributed real-time
systems,” Computer Performance and Dependability
Symposium, International, p. 0204, 1995.

Innovative Method of Software Testing Environment in
Cloud Computing Technology

AJCST Vol. 3 No. 2 July - December 201439

