
Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.4 No.2, 2015, pp.6-12

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2015.4.2.1757

Permission Tracking Security Model in Android Application

T.Nandhini1 and V.Arulmozhi2

1M.Phil, Scholar, Dept. of Computer Science, Bharathiyar University, Coimbatore, Tamil Nadu, India
2Associate Professor, Tiruppur Kumaran College For Women, Tirupur, Tamil Nadu, India

E-mail: nandyarasu@yahoo.in

Abstract - Android permissions are rights given to applications
to allow them to do things like take pictures, use the GPS or
make phone calls. When installed, applications are given a
unique UID, and the application will always run as that UID
on that particular device. The UID of an application is used to
protect its data and developers need to be explicit about
sharing data with other applications. Android supports
building applications that use phone features while protecting
users by minimizing the consequences of bugs and malicious
software. Android’s process isolation obviates the need for
complicated policy configuration files for sandboxes. This gives
applications the flexibility to use native code without
compromising Android’s security or granting the application
additional rights. Malicious software is an unfortunate reality
on popular platforms, and through its features Android tries to
minimize the impact of malware. However, even unprivileged
malware that gets installed on an Android device (perhaps by
pretending to be a useful application) can still temporarily
wreck the user’s experience. Applications can entertain users
with graphics, play music, and launch other programs without
special permissions. In this paper we introduce tracking and
monitoring of malicious activity of the apps that are installed
by the user even from playstore using trusted permission based
security model.

I. INTRODUCTION

 Smartphones are more popular than ever. One of the
reasons for this is the fact that the Google Android
operating system (OS) is a platform that enables developers
to write applications and distribute them for free in an open
market. According to the recent analyzes, more than one
billion Android devices have been activated with an
astonishing growth of 1.4 million devices per day. With
this sort of growth, it is absolutely necessary for developers
to understand how to create secure Android applications.

 With the increasing numbers of applications available for
Android; spyware is becoming a most worry. Several
malicious applications, rolling from fake banking
applications to an SMS Trojan implanted into a fake media
player tools, have been detected on the Android Market
since the year. Still, there are other classes of malware that
might too come forth. What about concealing spyware in
the backdrop of a well-known app? For example, think an
app talking to be the latest version of a notable Twitter
client, which really campaigns spyware in the background
and uploads all private data to the attacker.

 Google management understood that the iPhone success
was largely based on the number of applications released for
end-users. Google’s resulting strategy is to provide
developers with an easy way to develop applications that
extend the functionality of the devices, using the Android
Software Development Kit (SDK) and the Native
Development Kit (NDK). In contrast to Apple, where
applications must be downloaded from the Apple AppStore
after rigorous control and approval (source code review for
potential security problems and copyright infringements),
Google arrives easier for developers to publish their
applications. The Android application publishing procedure
makes it easy to develop Android applications, but also
provides room for malicious application publishing. Unlike
some of the other platforms, Android does not restrict
application distribution via application signing and long
approval period. Even though an application has to be
signed to be installed on a device, it is possible to use self-
signed certificates.

 Applications can be granted permissions, which are
required to access critical phone resources or for inter-
application communication. Those permissions are defined
in advance (in the AndroidManifest.xml file), by the
developer who wrote the application and permissions are
displayed to the user for approval before the application
installation [1]. For example, a developer might claim that
his application requires complete access to the settings of
the phone, access to SMS/MMS reading and so on. So it is
up to the user to check the validity of these permissions. In
spite of the permissions-based security model implemented
by Android, anyone can publish an application on the
Android Market, which has no built-in method to detect if
this application contains malicious code or not [2].

 Past studies on smartphone users’ privacy concerns have
primarily focused on location tracking and sharing [3, 4, 5,
6]. Although location sharing is an important aspect of
smartphone privacy, only 2 of 134 Android permissions
pertain to location. Concurrently, Roesner et al. [7] studied
user expectations for location, copy-and-paste, camera, and
SMS security. Our study encompasses all permissions and
focuses on how users perceive the existing permission
warnings. In concurrent and independent work, Kelley et al.
[8] performed twenty semi-structured interviews to explore
Android users’ feelings about and understanding of
permissions. We propose a application that can track and

6AJCST Vol.4 No.2 July-December 2015

(Received 21 June 2015; Revised 10 July 2015; Accepted 30 July 2015; Available online 10 August 2015)

monitor the behavior of any installed app with concurrence
on permissions approved.

II. COMPONENTS OF ANDROID

A. Activity
In Android development terms, an “Activity” refers to
single, focused window that interacts with a user and
provides functionality. An activity forms the fundamental
building blocks of the application.
An activity has the following states:
Active
When an activity is interacting with a user, it is at the top of
the activity stack and visible to the user. Android will kill
any other services or activities on the stack to keep the
active activity alive.
Paused
This is a state where an activity is not in focus but is
actually visible to user. For example, this state is reached
when a pop-up appears when activity is running.
Stopped
This is the state where activity is not visible to user, but
resides in memory and retaining all data. This activity will
be killed to save memory if needed for an active activity.
Inactive
An activity just before launching, after it has been killed, is
said to be in an inactive state.
Knowing about the states of an activity allows a developer
to understand how data is handled and aids in implementing
activities securely.

B. Intents
Intent is commonly used to start an activity or service.
Intents can be broadcast and received within the application
itself and with other applications. This allows for great
flexibility in application development, information sharing,
and the ability to trigger operations in other applications.

There are two main types of intents:
Explicit intents:
Explicit intents specify the exact class that needs to be
invoked to launch an activity within the application. These
are limited to the application context in which they are run.
Implicit intents:
These are the intents that hold information about the type of
operation to be performed. It’s up to the OS to decide the
best operation based on the information provided.

C. Service
A service represents a background operation or an operation
that does not require user interaction and takes a lengthy
amount of time to complete. These operations are performed
without affecting the main application running on the front
end. Service continues to run in background, even when
application is not running.

Content Providers
Content providers store data persistently. They manage the
storage of application data and interact with a number of

local SQL databases. Content providers also provide the
best means to share data between applications.

WebView
WebViews act like a web browser to display HTML content
to the user. Android’s WebKit engine is used to display web
pages. Any vulnerability found in WebKit directly impacts
the WebView. This component allows a user to navigate
forward and backward through the history, zoom in and out,
and perform text searches, just like Internet Explorer,
Firefox, or any other browser.

Permissions
The core security of an application is defined by its
permissions. The extent to which an application can perform
an action is limited to the permissions defined in its
AndroidManifest.xml. By default, every application is
sandboxed by the OS and restricts access to the data of
another application. At the time of application installation,
the user is presented with the list of permissions that are
required by the application. Once the user grants those
permissions, only then the application will be installed.
Granting of permissions dynamically at runtime is not
supported.

D. Secure coding Recommendations
Lock-down application permissions
It is necessary to follow the principle of least privilege when
assigning permissions. Permissions should not be assigned
unless they are required. The application should be granted
only the minimum required permissions at the architecture
level. For instance, READWRITE permissions should not
be granted when only READ permissions are required. This
is a common mistake made by developers due to a lack of
understanding of the functionality at the application.
Examples like these underscore the importance of strong
application development planning and requirements
documentation.

 For example, the Android: protection Level element of
the AndroidManifest.xml file defines the protection/risk
level associated with the installed application. It also
provides the procedure the OS should follow to determine
whether the permission can be granted. When the value of
the parameter is dangerous, the application, when installed,
gains permission to access user data and to control the
device. Developers should exercise extreme caution while
assigning applications with high-risk permissions.
File permissions

 File permissions apply to files stored on external storage.
Any file created using openFileOutput is private to the
application and cannot be accessed by other applications.
Pay close attention before providing a file with the
MODE_WORLD_READABLE/MODE_WORLD_WRITA
BLE permissions. This allows other applications to access
the file. Do not provide the writable option until it is
required to enforce the principle of least privilege. The

7 AJCST Vol.4 No.2 July-December 2015

Permission Tracking Security Model in Android Application

standard way to share a file between applications is to use
Content Provider.

III. RELATED WORKS

 Enck et al. [9] describe the design and implementation of
a framework to detect potentially malicious applications
based on permissions requested by Android applications.
The framework reads the declared permissions of an
application at install time and compares it against a set of
rules deemed to represent dangerous behavior. For example,
an application that requests access to reading phone state,
record audio from the microphone, and access to the
Internet could send recorded phone conversations to a
remote location. The framework enables applications that
don’t declare (known) dangerous permission combinations
to be installed automatically, and defers the authorization to
install applications that do to the user. Ontang et al. [10]
present a fine-grained access control policy infrastructure
for protecting applications. Their proposal extends the
current Android permission model by allowing permission
statements to express more detail. For example, rather than
simply allowing an application to send IPC messages to
another based on permission labels, context can be added to
specify requirements for configurations or software
versions. The authors highlight that there are real-world use
cases for a more complex policy language, particularly
because untrusted third-party applications frequently
interact on Android.

 Research on Android's security infrastructure includes
studies on how permissions are enforced [11], used [12],
and misused or attacked [13, 14, 15, 16]. Some try to secure
Android applications against attackers by performing static
or dynamic analysis of apps (ex. [17, 18, 19]). Xu, et al.
[20] developed Aurasium, a tool that uses static analysis and
code injection to detect or prevent privilege escalation
attacks. Like Android, Aurasium does not require
modifications to the operating system. Conti, et al. [21]
developed Crepe, a system capable of enforcing rule based
context aware security policies. Naumann, et al. [22]
extended Android permission with custom user defined
constraints. None of the above work includes formal
analysis or verification.

 Research on formalization of the Android stack and API
includes Chaudhuri [25] who gave a formal model of a
subset of the Android communication system; Enck, et al.
[24] who developed TaintDroid to track the flow of
sensitive information between Android apps (extended by
Shreckling, et al. [25] with more complicated, dynamic run
time policies); and Armando, et al. [1] who presented a
more complete model of the Android middleware using
types. With respect to formalizations for secure sharing of
resources, Blanchet and Chaudhuri [23] developed a
formally verified protocol for secure file sharing on
untrusted storage (a tool which could be used to secure
Android's SD card) and Fragkaki, et al. [26] gave formal
typing rules to explain Android's security model. Similar to

our work, Fragkaki et al. described Sorbet, a modification to
Android which enforces secrecy and integrity properties
written by app developers. In contrast, Android is developed
to enable the easy specification of authorization policies and
relies upon existing Android mechanisms without requiring
changes to the operating system.

 Android Permission Analysis This category includes
advancements in analyzing Android permissions. Kirin [31]
maps dangerous functionalities with the permissions
required to perform them after specifying permission based
security rules. Barrera et al. [32] studied the permission
usage among a variety of categories of applications in
Android market by mapping an application to a category
based on its requested permissions. Felt et al. [33] manually
compare the functionalities of 36 Android applications to
the permissions requested by these applications. Their
results show that 4 out of 36 applications are over-
privileged. Felt et al. [34] also propose Stowaway, which
identifies over-privileged applications by detecting
unnecessary permissions for API calls in applications. The
mapping provided in [34] is very helpful, but the mapping
alone cannot explain the cause and the purpose of the use of
permissions.

 Smartphone platform security includes a wide range of
approaches [35],[36] that aims at improving the security and
privacy of smartphone platform. For example, TaintDroid
[37], based on the Android platform, provides a scheme to
monitor a third-party application’s usage of sensitive
information such as what information leaves a device and
where it is sent. PiOS [38] uses control flow analysis
followed by data flow analysis to confirm whether private
information reaches outbound sink. Privacy Oracle [37] and
TightLip [39] are both black-box-based differential testing
schemes for PCs to detect sensitive information leakage by
third-party applications via network traffic. These
approaches leverage various analysis techniques to enhance
the security of the platform.

 Application Security includes approaches to study the
security of Android applications. For example, Felt et al.
[40] propose inter-process communication (IPC) inspection
to monitor messages used for IPC and reduces privilege of
the recipient to the intersection of recipient’s and the
requester’s permissions. Dietz et al. [41] propose QUIRE to
track the call-chain of IPC in order to defend the confused
deputy attack and to provide a mutual verification scheme
for applications. Chin et al. [42] ComDroid to detect the
vulnerabilities in the inter-application communication.
Bugiel et al. [43] proposed XmanDroid to prevent privilege
escalation. XmanDroid monitors the communications
between applications and apply policy to restrict the
interaction. Among the most related, Gilbert et al. [44]
proposed AppInspector, which leverages information-flow
tracking on sensitive information to automatically identify
security and privacy violation in an application.

8AJCST Vol.4 No.2 July-December 2015

T.Nandhini and V.Arulmozhi

IV. PROPOSED WORK

 We propose a framed work for analyzing the use of
permissions in android applications. This framework
identifies the apps installed and it behavior according to the
permission granted upon installation. This real time tracking
framework monitors the installed apps for any violation in
the permissions agreed. This help user identify the
malicious activity and its real intention on the data usage
and permissions. Our framework only tracks on the
applications in the runtime so it is impossible to conclude
that the app is malicious or infected before installing, i.e.,
we don’t tracking the source code level evaluations.

A.Android Defined Permissions

 Both the Android system and an application can define
permissions, but most of the permissions requested by
Android applications are defined by the Android system.
This is because Android-defined permissions control the
access to sensitive resources and functionalities. There are
130 Android-defined permissions [27], among which 122
permissions are available to third party applications [28].
Permissions are defined with one of the four different
protection levels, which characterize the potential risks
implied in the permission and enforce different install-time
approval processes. These four levels include: 1) Normal 2)
Dangerous 3) Signature and 4) SignatureOrSystem. Only
dangerous permissions are prompted to users for their
explicit approval. Signature permissions are automatically
granted when requesting application is signed with the same
certificate as the application that declared the permissions.
SignatureOrSystem permissions are essentially limited to
applications that are pre-installed in Android’s “/system”
partition OR signed with the firmware key. Normal
permissions are always granted by the system automatically.
Android-defined permissions are checked when an
application tries to interact with the Android API or to
access a system content provider or to send and receive
specific system Intents.

 Android applications are distributed in a compressed file
format (i.e., .apk file) that contains a manifest file (i.e.,
AndroidManifest.xml), compiled Dalvik executables (i.e.,
class.dex) and other resource files (e.g., files in the
“res/”folder). The manifest file not only lists all the
permission requests and permission definitions, it also
enumerates all the components of the application. The
resource files include definitions of UI layouts,
application’s menu, raw resource files, etc. The information
in these files is used to render UIs. Android applications are
built upon application components, which include four
types: activities, services, content providers and broadcast
receivers. Each of these components has its own life cycle
and UI. Most of the components can be invoked
individually. We focus on activities and service components
since most functionality of an application is implemented in
these two types of components.

B.Essential of the application

 To design a tool that is capable of in-depth analysis of
the use of permissions in Android applications, we outline
the following design requirements: (R1) Capability to
analyze permissions from various aspects (e.g., locations,
causes and purposes). Information collected from different
aspects can characterize the use of permissions and provide
detailed information to users and developers; (R2)
Resiliency to static evasions. As we pointed out, existing
static analysis-based approaches can be spoofed by inserting
unnecessary or unreachable API methods that require
sensitive permissions. Therefore, it is important to identify
the real “user” of a requested permission and the necessity
of the permission; (R3) Capability to analyze different
permissions. Different permissions have different purposes.
Some permissions protect the access of sensitive
information, and some permissions restrict the invocation of
sensitive operations. As a consequence, an analysis
approach that can only track sensitive information may not
be able analyze permissions that do not involve any
sensitive information. Given this, the analysis approach
should be generic so that it can be applied to various
permissions with different purposes; (R4) Scalability to
analyze a large number of applications. Since both the
number of existing Android applications and the increasing
rate of new Android applications are high, the analysis
approach should be efficient so that it can analyze millions
of applications.

 It extracts meta-information (e.g., list of requested
Android permissions) about the application. The framework
lists the Android API methods, the invocation of which can
trigger the permission check, based on the permission-to-
API-calls map [29]. After that, it automatically explores the
functionality of the application and logs the execution.
These log files are then processed using method profiling to
identify the permission triggering API calls and to analyze
the context of these calls. Based on the call stacks of the
permission triggering API calls, Also our application
framework can analyze the use of each checked Android
permission in terms of location, cause and purpose of the
permission use. In the analysis, our framework can also
evaluate the potential security/privacy risks in the use of
Android permissions.

 Our Application explores the functionality of an
application by invoking its activity and service components
since most application components (i.e., activity and
service) can be executed individually. The framework first
identifies all the activity and service components, and it
then starts each of the identified components individually to
reveal the functionality implemented in that component.
The identification of activity/ service components is
achieved by parsing the meta information stored in the
AndroidManifest.xml file. Later our framework parses the
ids of “<activity>” and “<service> ” tags in the
AndroidManifest.xml file. To start an identified component,
the application parses the intent-filter and sends out Intent

9 AJCST Vol.4 No.2 July-December 2015

Permission Tracking Security Model in Android Application

messages to the target component using the Android debug
bridge (adb) console.

 Each activity component defines multiple functions that
can only be triggered by proper user events. To trigger these
functions, the framework first leverages the layout
information of the UI. Each activity has its layout
information, which specifies the types of the UI elements
(e.g., textview, button, etc.) as well as their positions. With
the layout information, which is stored in the “/res/layout/”,
the framework can send specific user events to the positions
of the target UI elements so that it can automatically trigger
the functions. Then the application uses the adb tool and a
testing tool MonkeyRunner [30] to generate and to send
user events. However, the positions of some UI elements are
not explicitly defined. This is because either the positions
are inherited from the parent objects in the view tree, or the
positions are relative in order to fit in various screen sizes.
The framework then uses the trackball movement events,
the function of which is similar to the Tab order in a form.
By sending enough trackball movement events, each UI
element that can receive focus will be selected at least once.
Following each trackball movement event, the framework
sends a set of user events so that it can trigger the function
associated with the selected UI element. By applying both
activity-based and layout-based UI elements interaction, to
automatically explore most of the functionality of an
activity component.

C.Permission Use Instance

 A permission use instance (i.e., a permission check)
consists of two pieces of information: the action/event that
triggers the permission check; the type (i.e., activity or
service) of the application component where the triggering
API method resides in. Our framework determines the type
of the component based on the user-defined class that
contains the triggering API method and the component type
information parsed in the functionality exploration step.
That is, the application locates the container user defined
class in the component where the class is defined based on
the source tree structure of the application.

 We are interested in the most direct action/event that
causes the permission check. In Android, action/events are
processed by corresponding event handlers, the
identification of which is not straightforward, since an event
handler can be registered in several ways: 1) overriding the
default event handler of a View class; 2) registering a
customized event listener; 3) implementing a customized
event handler. To this end, we leverage the fact that events
are program injected (i.e., by MonkeyRunner). More
specifically, to identify event handlers, our application
instead identifies the event injection methods since these
methods are always followed by the corresponding event
handlers. After that, the applicatoin traces back the call
stack of the triggering API call to determine the most direct
event/action that causes the permission check.

D.Purpose of Permission Use

 The framework determines the purpose of a permission
usage instance from two aspects. First, the functionality of
the API call that triggers the permission check. For
example, a call to API “android.location LocationManager
getLastKnownLocation()” indicates the reason to check the
permission “ACCESS_FINE_LOCATION” is to obtain the
last known (cached) geographic location information on the
smartphone. Meanwhile, a call to API
“java.net.HttpURLConnection.<init>” indicates that the
reason to request “INTERNET” permission is to start a
HTTP connection to a remote server. The information
obtained from examining the functionality of triggering API
calls is helpful in determining the purpose of permission
checks, but not comprehensive. Since one permission check
may be related to another check, and only their relation can
expose the true purpose of both permission checks. For
example, a check of “READ_PHONE_STATE” (e.g, to
collect phone identification information) followed by a
check of “INTERNET” (e.g., to communicate with a remote
server via Internet) suggests that the purpose of both checks
is to send collected identification information to a remote
recipient.

 The framework uses the correlations between multiple
permission checks as the second aspect in the analysis of the
purpose of permission use. Two API calls are correlated if
they appear on the same execution path. The framework
discoveries correlations among individually identified
permission checks based on the call stacks of their
triggering API calls. More specifically, it compares one call
stack with another to find a common sub-sequence of calls
between them. When correlations are discovered, the
application combines the call stacks together to form a new
call stack to represent the correlation.

E.Evaluation of Potential risks

 Our application evaluates potential risks in permission
use by comparing the analyzed instances of permission use
to known malicious use patterns. These patterns are
obtained from our analysis of malicious applications. Given
the large number of applications, the first step in the
comparison is to filter out applications that do not request
any combination of permissions that is necessary to perform
malicious behavior. These combinations are also obtained
from our analysis of malicious applications. This step can
effectively reduce the number of applications need to be
compared. For the rest of the applications, our framework
compares the correlations (if any) of their permissions use
with a set of correlations of permission use found in
malicious applications to determine whether the correlations
indicate any malicious behaviors of the application.

V. CONCLUSION

 This paper proposes a solution for permission tracking
and the use of permissions installed in android applications.

10AJCST Vol.4 No.2 July-December 2015

T.Nandhini and V.Arulmozhi

The proposed framework identifies the apps installed and its
behavior according to the permission granted upon
installation. This real time tracking framework monitors the
installed apps for any violation in the permissions agreed.
This help user identify the malicious activity and its real
intention on the data usage and permissions. Also using this
app we can identify the strength and weakness of android
app with respect to its functionality and approach on
information gathering.

REFERENCES

[1] Google. Android 4.1 Compatibility Definitions. Android
Compatibility Program, 7 Sep 2012. Rev 2.

[2] R Xu, H Sadi, and R Anderson. Aurasium: practical policy
enforcement for android applications. In 21st USENIX Conf on
Security (SEC '12).

[3] L. Barkhuus and A. Dey. Location-based services for mobile
telephony: a study of users’ privacy concerns. In Proceedings of
the International Conference on Human-Computer Interaction,
2003

[4] S. Consolvo, I. E. Smith, T. Matthews, A. LaMarca, J. Tabert, and
P. Powledge. Location disclosure to social relations: why, when, &
what people want to share. In Proceedings of the ACM CHI
Conference on Human Factors in Computing Systems, 2005.

[5] J. Lindqvist, J. Cranshaw, J. Wiese, J. Hong, and J. Zimmerman.
I’m the mayor of my house: examining why people use Foursquare
- a social-driven location sharing application. In Proceedings of the
ACM CHI Conference on Human Factors in Computing Systems,
2011.

[6] P. Kelley, M. Benisch, L. Cranor, and N. Sadeh. When are users
comfortable sharing locations with advertisers? In Proceedings of
the ACM CHI Conference on Human Factors in Computing
Systems, 2011

[7] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. Wang, and C.
Cowan. User-Driven Access Control: Rethinking Permission
Granting in Modern Operating Systems. In Proceedings of the
IEEE Conference on Security and Privacy, 2012.

[8] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and D.
Wetherall. A Conundrum of Permissions: Installng Applications
on an Android Smartphone. In Proceedings of the Workshop on
Usable Security (USEC), 2012.

[9] W. Enck, M. Ongtang, and P. D. McDaniel. On Lightweight
Mobile Phone Application Certification. In E. Al-Shaer, S. Jha,
and A. D. Keromytis, editors, ACM Conference on Computer and
Communications Security, pages 235–245. ACM,

[10] M. Ongtang, S. E. McLaughlin, W. Enck, and P. D. McDaniel.
Semantically rich application-centric security in android. In
ACSAC, pages 340–349. IEEE Computer Society, 2009.

[11] A Felt, E Chin, S Hanna, D Song, and DWagner. Android
permissions demystied.In 18th ACM Conf on Computer and
Comm Security (CCS '11).

[12] D Barrera, H G Kayacik, P C van Oorschot, and A Somayaji. A
methodology for empirical analysis of permission-based security
models and its application to android. In 17th ACM Confine
Computer and Comm Security (CCS '10).

[13] PH Chia, Y Yamamoto, and N Asokan. Is this app safe? A large
scale study on application permissions and risk signals. In WWW
'12.

[14] L Davi, A Dmitrienko, A Sadeghi, and M Winandy. Privilege
escalation attacks on android. In 13th Intl Conf on Information
Security (ISC '10).

[15] A Felt, H Wang, A Moshchuk, S Hanna, and E Chin. Permission
re-delegation: attacks and defenses. In 20th USENIX Conf on
Security (SEC'11).

[16] P Hornyack, S Han, J Jung, S Schechter, and D Wetherall. These
aren't the droids you're looking for: retorting android to protect
data from imperious applications. In 18th ACM Conf on Computer
and Comm Security (CCS '11).

[17] W Enck, M Ongtang, and P McDaniel. On lightweight mobile
phone application certification. In 16th ACM Conf on Computer
and Comm Security (CCS '09).

[18] P P F Chan, L C K Hui, and S M Yiu. Droidchecker: analyzing
android applications for capability leak. In ACM Conf on Security
and Privacy in Wireless and Mobile Networks (WISEC '12).

[19] A Fuchs, A Chaudhuri, and JS Foster. SCanDroid: Automated
security certification of android applications. Technical report, U
of Maryland College Park, 2009.

[20] R Xu, H Sa�di, and R Anderson. Aurasium: practical policy
enforcement for android applications. In 21st USENIX Conf on
Security (SEC '12).

[21] M Conti, V Nguyen, and B Crispo. Crepe: context-related policy
enforcement for android. In 13th Intl Conf on Information Security
(ISC '10).

[22] M Nauman, S Khan, and X Zhang. Apex: extending android
permission model and enforcement with user-dened runtime
constraints. In 5th ACM Symp on Information, Computer and
Communications Security (ASIACCS '10).

[23] A Chaudhuri. Language-based security on android. In ACM
SIGPLAN Fourth Workshop on Programming Languages and
Analysis for Security (PLAS '09).

[24] W Enck, P Gilbert, B Chun, L Cox, J Jung, P McDaniel, and A
Sheth. Taintdroid: an information-how tracking system for
realtime privacy monitoring on smartphones. In 9th USENIX Conf
on Operating Systems Design and Implementation (OSDI '10).

[25] M Nauman, S Khan, and X Zhang. Apex: extending android
permission model and enforcement with user-defined runtime
constraints. In 5th ACM Symp on Information, Computer and
Communications Security (ASIACCS '10).

[26] E Fragkaki, L Bauer, L Jia, and D Swasey. Modeling and
enhancing android's permission system. In ESORICS 2012.

[27] K. W. Y. Au, Y. F. Zhou, Z. Huang, P. Gill, and D. Lie, “Short
paper: a look at smartphone permission models,” in Proceedings of
the 1st ACM workshop on Security and privacy in smartphones
and mobile devices, ser. SPSM ’11, 2011, pp. 63–68.

[28] “Androidmanifest.permission.”http://developer.android.com/
reference/android/Manifest.permission.html 2012.

[29] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM
conference on Computer and communications security, ser.CCS
’11, 2011, pp. 627–638.

[30] “Android developer: monkeyrunner,”http://developer.android.com/
guide/developing/tools/ monkeyrunner_concepts.html, 2012.

[31] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile
phone application certification,” in Proceedings of the 16th ACM
conference on Computer and communications security, ser. CCS
’09, 2009, pp. 235–245.

[32] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based
security models and its application to android,” in Proceedings of
the 17th ACM conference on Computer and communications
security, ser. CCS ’10, 2010, pp. 73–84.

[33] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of
application permissions,” in Proceedings of the 2nd USENIX
conference on Web application development, ser. WebApps’11,
2011, pp. 7–7.

[34] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM
conference on Computer and communications security, ser. CCS
’11, 2011, pp. 627–638.

[35] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming
informationstealing smartphone applications (on android),” in
Proceedings of the 4th international conference on Trust and
trustworthy computing, ser. TRUST’11, 2011, pp. 9

[36] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells: a
virtual mobile smartphone architecture,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles,
ser. SOSP ’11, 2011, pp. 173–187.

[37] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,” in
Proceedings of the 9th USENIX Symposium on Operating System

11 AJCST Vol.4 No.2 July-December 2015

Permission Tracking Security Model in Android Application

http://developer.android.com/

Design and Implementation, ser. OSDI ’10. USENIX, October
2010.

[38] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting
privacy leaks in ios applications,” in 18th Annual Symposium on
Network and Distributed System Security. San Diego, California:
Internet Society, February 2011.

[39] A. R. Yumerefendi, B. Mickle, and O. P. Cox, “Tightlip: Keeping
applications from spilling the beans,” in Proceedings of the 4th
USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI ’07. USENIX, April 2007.

[40] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission re-delegation: Attacks and defenses,” in Proceedings
of the 20th USENIX Security Symposium, ser.USENIX’11, 2011.

[41] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach,
“Quire: Lightweight provenance for smart phone operating
systems,” in 20th USENIX Security Symposium, San Francisco,
CA, Aug. 2011.

[42] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
interapplication communication in android,” in Proceedings of the
9thinternational conference on Mobile systems, applications, and
services, ser. MobiSys ’11, 2011, pp. 239–252.

[43] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischera, and A.-R. Sadeghi,
“Xmandroid: A new android evolution to mitigate privilege
escalation attacks,” Technische Universitat Darmstadt, Center for
Advanced Security Research, Tech. Rep., 2011.

[44] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, “Vision: automated
security validation of mobile apps at app markets,” in Proceedings
of the second international workshop on Mobile cloud computing
and services, ser. MCS ’11, 2011, pp. 21–26.

12AJCST Vol.4 No.2 July-December 2015

T.Nandhini and V.Arulmozhi

