
Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.5 No.1, 2016, pp.30-35

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2016.5.1.1761

Design Enrichment of Query Forms for Database Query
R. S. Bhalerao1, Dhananjay Kumbhakarna2, Ashvini Avhad3, Kirti Shinde4 and Dipalee Tidke5

1Professor Department of Information Technology, SVIT college of Engineering, Chinchili, Nashik, Maharashtra, India
2,3,4,5UG Student, Department of Information Technology, SVIT college of Engineering, Chinchili, Nashik, India

E-mail: dkumbhakarna@gmail.com

Abstract - The scientific databases & web databases maintain
huge and large amount of data. The real-world databases
contain over thousands of relations & attributes. predefined
database query forms are not able to satisfy various queries
from users on those databases. The review of DQF is to
capture a user’s preference and rating query form
components, assisting to take decisions. The creation of a
query form is an faster process and is given by the user. A user
can also create the query form and submit queries to view the
query output at each iteration. This way, a query form could
be dynamically created till the user satisfies with the query
forms. The important F-measure for measuring the goodness
of a query form. A model is developed for estimating the
goodness of a query form in DQF. Experimental evaluation
and user study demonstrate the accuracy and performance of
the system. The ranking of form components is based on the
captured user preference. A user can also fill the query form
and submit queries to view the query output at each step. This
type a query form could be dynamically refined till the user
satisfies with the query results.
Keywords: Query Form, User Interaction, Query Form
Generation

I.INTRODUCTION

Query form is one of the most widely used user interfaces
for querying databases. Traditional query forms are
designed and predefined by developers or DBA in various
information management systems. With the rapid
development of web information and scientific databases,
modern databases become very large and complex. In many
natural studies, such as genomics and diseases, the
databases have over hundreds of entities for chemical and
biological data resources. Many web databases, such as
BigData and MongoDB, approximately have thousands of
structured web entities. Therefore, it is hard to design a set
of static query forms to satisfy various ad-hoc database
queries on those complex databases.

Many old database management and development tools, like
Easy Query , Cold Fusion , SAP and Microsoft word,
provide several mechanisms to let users create customized
queries on databases. The creation of customized queries
totally depends on users’ manual editing . If a user is not
friendly with the database in advance, those thousands of
data attributes would confuse and give the error.

Existing System:

Recently system is automatic approaches to create the
database query forms without user interaction presented a

data-driven method. It first finds a set of data relations,
which are most likely queried based on the database schema
and data instances. Then, the query forms are generated
based on the selected attributes. One problem of the
aforementioned approaches is that, if the database schema is
large and complex, user queries could be quite diverse. In
that case, even generate lots of query forms in advance ,
there are still user queries that cannot be satisfied by any
one of query forms. Another problem is that, when generate
a large number of query forms, how to let users find an
appropriate and desired query form would be challenging. A
solution that combines keyword search with query form
generation is proposed. It automatically generates a lot of
query forms in advance. It works well in the databases
which have rich textual information in data tuples and
schemas. It is not appropriate when the user does not have
concrete keywords to describe the queries at the beginning,
especially for the numeric attributes.

1. Proposed System:

A Dynamic Query Form system (DQF) , a query process
which is capable of dynamically generating query forms for
users. Different from traditional document retrieval, users in
database retrieval are often willing to perform many rounds
of actions (i.e., fetching query conditions) before identifying
the last candidates. The essence of DQF is to capture user
interests during user interactions and to adapt the query
form iteratively. Each step consists of two types of user
interactions: Query Form design and Query Execution. It
starts with a basic query form which contains very few
primary attributes of the database. The basic query form is
then enriched iteratively via the interactions between the
user and our system until the user is satisfied with the query
outputs.

1.1 System Approach:
To propose a Dynamic Query Form system: DQF, a query
interface which is capable of automatically generating query
forms for users. Different from traditional document
retrieval, users in database retrieval are often willing to
perform many rounds of actions before identifying the final
outputs . The essence of DQF is to capture user interests
during user interactions and to adapt the query form
iteratively. Each time consists of two types of user
interactions: Query Form Enrichment and Query Execution
(see Table 1). Figure 1 shows the work-flow of DQF. It
starts with a basic query form which contains very few

30AJCST Vol.5 No.1 January-June 2016

(Received 4 April 2016; Revised 20 April 2016; Accepted 15 May 2016; Available online 23 May 2016)

http://www.trp.org.in/

primary attributes of the database. The basic query form is
then desing iteratively via the interactions between the user
and our system until the user is satisfied with the query

results. Mainly study the ranking of query form components
and the dynamic generation of query forms.

TABLE 1 INTERACTIONS BETWEEN USERS AND DQF

Form query design 1. DQF recommends a ranked list of query form components to the user.

2. The user selects the desired forms components into the current query
form.

Query Evaluation 1. The user fills the current query forms and submit the query.
2. DQF evaluates the query and sows the results.
3. The user provides the feedback about the query output.

1.2 Modules:

The system is proposed to have the following modules
along with functional requirements.

1. Query Form Enrichment
2. Query Execution
3. Customized Query Form
4. Database Query Recommendation
5.

Query Form Enrichment :

1. DQF recommends a ranked list of query form
components to the user.

2. The user selects the form components into the
current query form.

3.
 Query execution:

1. The user adds out the current query form and
submit a query.

2. DQF evaluate the query and shows the outputs.
3. The user provides the feedback about the query

outputs.

Customized Query Form:

The providing visual interfaces for developers to create or
customize query forms. The error of those tools is that, they
are provided for the professional developers who are
familiar with their databases, not for last users. If proposed
a system which allows last users to customize the existing
query form at run time. An last user may not be friendly
with the database.

Database Query Recommendation:

Recent studies introduce collaborative approaches to
recommend database query components for database
exploration.

1.3 Aim

Our contributions can be summarized as follows:

1. Propose a dynamic query form system which creates the

query forms according to the user’s desire at run time.
The system provides a answer for the query interface in
large and complex databases.

2. Apply F-measure to estimate the greatness of a query
form. F-measure is a typical metric to evaluate query
outputs. This metric is also accurate for query forms
because query forms are designed to help users query
the database. The greatness of a query form is
determined by the query outputs created from the
query form. Based on this, rating and recommend the
potential query form components so that users can
define the query form easily.

Based on the proposed metric, develop efficient algorithms
to estimate the greatness of the projection and selection
form components. Here accuracy is important because DQF
is an online system where users often expect quick
response.

II. SYSTEM ARCHITECTURE

This topic are trying to develop multiple methods to capture
the users interest for the queries besides the click feedback.
Adding a text-box for users to input some keywords queries.
The relevance score between the keywords and the query
form can be incorporated into the ranking of form
components at each step.

31 AJCST Vol.5 No.1 January-June 2016

Design Enrichment of Query Forms for Database Query

Fig.1 System Architecture

III. QUERY FORM INTERFACE

3.1 Query Form

This part formally define the query form. Each query form
corresponds to an SQL query template.
Definition 1: A query form F is defined as a tuple (AF , RF ,
σF , ◃▹ (RF)), which represents a database query template
as follows:

F = (SELECT A1, A2, ..., Ak
FROM ◃▹ (RF) WHERE σF),
where AF = fA1, A2, ...,

 Akg are k attributes for projection, k > 0. RF = fR1, R2, ...,
Rng is the set of n relations (or entities) involved in this
query, n > 0. Each attribute in AF belongs to one relation in
RF . σF is a conjunction of expressions for selections (or
conditions) on relations in RF . ◃▹ (RF) is a join function to
create a conjunction of expressions for joining relations of
RF .

The user interface of a query form F , AF is the set of
columns of the output table. σF is the set of input
components for users to fill. Query forms allow users to
create parameters to generate different queries. RF and ◃▹
(RF) are not visible in the user 3 interface, which are
usually created by the system according to the database
schema. For a query form F , ◃▹ (RF) is automatically
constructed according to the primary keys among relations
in RF . Meanwhile, RF is determined by AF and σF . RF is
the union set of relations which contains at least one
attribute of AF or σF . Hence, the components of query
form F are actually determined by AF and σF . As we

mentioned, only AF and σF are visible to the user in the
user interface. Focus on the projection and selection
components of a query form. Ad-hoc join is not handled by
our automatic query form because join is not a part of the
query form and is invisible for users. As for ”Aggregation”
and ”Order by” in SQL, there are limited options for users.
For example, ”Aggregation” can only be MAX(maximum),
MIN(minimum), AVG(average), and so on; and ”Order by”
can only be ”increasing order” and ”decreasing order”. Our
dynamic query form can be easily extended to include those
options by implementing them as dropdown boxes in the
user interface of the query form.

3.2 Query Outputs

To decide whether a query forms is right or not, a user does
not have time to go over each data step in the query outputs.
In many database queries output a large amount of data
instances. In series to avoid this “Multiple-Answer”
problem, we only output a compressed result table to show a
higher level view of the query outputs first. Each instance in
the compressed table represents a cluster of actual data
instances. The user can check through interested clusters to
show the detailed data instances. Figure 2 shows the flow of
user actions. The compact upper-level view of query outputs
is proposed in. There are many one-pass clustering
algorithms for generating the compressed view efficiently
Certainly, different data clustering methods would have
different compressed views for the users. Different
clustering methods are preferable to different data types.
Clustering is just to provide a goodness view of the query
outputs for the user. The system developers can select a
different clustering algorithm if needed.

32AJCST Vol.5 No.1 January-June 2016

R. S. Bhalerao, Dhananjay Kumbhakarna , Ashvini Avhad , Kirti Shinde and Dipalee Tidke

Fig. 2 User Actions

IV. RANKING TABLE

Query forms are designed to return the user’s require
output. There are two traditional measures to maintaining
the quality of the query outputs: precision and recall. Query
forms are able to generate different queries by different
inputs, and different queries can output different query
outputs and achieve different precisions and recalls, so we
use expected precision and expected recall to evaluate the
expected performance of the query form. Intuitively,
expected precision is the expected proportion of the query
outputs which are interested by the current user. Expected
recall is the expected proportion of user interested data
instances which are returned by the current query form. The
user interest is estimated based on the user’s click-through
on query outputs displayed by the query form. For example,
if some data instances are clicked by the user, these data
instances must have high user interests. The query form
components which can capture these data instances should
be rating higher than other components. Next introduce
some notations and then define expected precision and
recall.

Notations:

Lists the symbols used in this topic. Let F be a query form
with selection condition σF and projection attribute set AF .
Let D be the collection of instances in ◃▹ (RF). N is the
number of data instances in D. Let d be an instance in D
with a set of attributes A = fA1, A2, ..., Ang, where n = jAj.
We use dAF to denote the projection of instance d on
attribute set AF and call it a projected instance. P (d) is the
occurrence probability of d in D. P (σF jd) is the probability
of d satisfies σF . P (σF jd) 2 f0, 1g.

P (σF jd) = 1 if d is returned by F and P (σF jd) = 0
otherwise.

Since query form F projects instances to attribute set AF ,
we have DAF as a projected database and P (dAF) as the
probability of projected instance dAF in the projected
database.

Problem Definition: In this topic, provide a rating list of
query form components for the user. Problem 1 is the
formal statement of the rating problem.

 TABLE II
 SYMBOLS AND NOTATIONS

F query form
RF set of relations involved in F
A set of all attributes in ◃▹ (RF)

AF set of projection attributes of query form F
Ar(F) set of relevant attributes of query form F

σF set of selection expressions of query form F
OP set of relational operators in selection
D data instance in ◃▹ (RF)
D the collection of data instances in ◃▹ (RF)
N number of data instances in D

dA1 data instance d projected on attribute set A1

DA1

set of unique values D projected on attribute
set

 A1
Q database query

DQ results of Q
Duf user feedback as clicked instances in DQ

Α fraction of instances desired by users

Problem 1: Let the current query form be Fi and the
next query form be Fi+1, construct a rating of all candidate
form components, in descending order of F ScoreE(Fi+1),
where Fi+1 is the query form of Fi designed by the
corresponding form component.

F ScoreE(Fi+1) is the estimated greatness of the next query
form Fi+1. Aim of the topic to maximize the greatness of the
next query form, the form components are rating in
descending order of F ScoreE(Fi+1). In the next topic,
discuss how to compute the F ScoreE(Fi+1) for a specific
form component.

V. ESTIMATION OF RATING SCORE

5.1 Rating Projection Form Components

DQF provides a 2nd level rating list for projection
components. The 1st level is the rating list of entities. The
2nd level is the rating list of attributes in the same entity. 1st
describe how to rank each entity’s attributes locally, and
then describe how to rank entities.

33 AJCST Vol.5 No.1 January-June 2016

Design Enrichment of Query Forms for Database Query

Algorithm 1 give detail in for the algorithm of the One-Query’s query construction. The function Generate Query is to
generate the database query based on the given set of projection attributes A one with selection expression σone.

Algorithm 1: Query Generation

Data: Q = fQ1, Q2, ..., g is the set of previous queries executed on Fi.

Result: Qone is the query of One-Query begin
σone 0

for Q 2 Q do

σone σone _ σQ

When the system receives the output of the query Qone from the database engine, it calls the second algorithm of One-Query
to find the best query condition. 1st discuss the condition. The basic idea of this algorithm is based on a simple property. For
a specific attribute As with a data instance d, given two conditions:

s1 : As a1, s2 : As a2, and a1 a2, if s1 is satisfied, then s2 must be satisfied. Based on this property, user could incrementally
compute the F Score of each query condition by scanning one pass of data instances.
.
Algorithm 2: FindBestLessEqCondition

Data: α is the fraction of instances desired by user,

DQone is the query result of Qone, As is the selection attribute.

Result: s is the best query condition of As. begin
// sort by As into an ordered set Dsorted
Dsorted ←− Sort(DQone , As)
s ←− ∅, f score ←− 0 n ←− 0, d ←− αβ2

for i ← 1 to |Dsorted| do
d ←− Dsorted[i]
s ←− “As ≤ dAs ”
// compute fscore of “As ≤ dAs ”
n ←− n + Pu(dAFi)P (dAFi)P (σF i |d)P (s|d) d ←− d + P (dAFi)P (σFi |d)P (s|d)
f score ←− (1 + β2) · n/d

if f score ≥ f score then s ←− s

f score ←− f score

Complexity: As for other query conditions, such as “=”, “
”, user can also find similar incremental approaches to
compute their FScore. User can also share the sorting output
in the 1st step. And for the 2nd step, all incremental
computations can be merged into one pass of scanning
DQone . The time complexity of finding the best query
condition for an attribute is O(jDQone j jAFi j). Ranking
every attribute’s selection component is O(jDQone j jAFi j
jAr(Fi)j).

VI. EVALUATION

The goal of our implementation is to check the following
hypotheses:

H1: Is DQF more usable than older approaches such as
static query form and customized query form?

H2: Is DQF more effective to rate projection and
selection components than the baseline method
and the random method?

H3: Is DQF efficient to rate the suggested query form
components in an online user interface?

VII.CONCLUSION

Thus system is proposed that a dynamic query form creation
approach which helps users dynamically create query forms.
The key idea is to use a probabilistic model to rate form
components based on user preferences. It captures user

Aone AFi [Ar(Fi)
Qone GenerateQuery(Aone,σone)

34AJCST Vol.5 No.1 January-June 2016

R. S. Bhalerao, Dhananjay Kumbhakarna , Ashvini Avhad , Kirti Shinde and Dipalee Tidke

preference using both historical queries and run-time
feedback such as click-through. Experimental outputs show
that the dynamic approach often leads to greater success rate
and simpler query forms compared with a static approach.
The rating of form components also makes it simple for
users to customize query forms. As future work, user will
study how the approach can be extended to non-relational
data.

REFERENCES

[1] C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” In Procceding VLDB, vol. 54,
no. 4, pp. 81–92, September 2003.

[2] R. Aggarwal, S. Gollapudi, A. Halverson, and S. Leong,
“Diversifying search result,” In Procceding VLDB, Barcelona,
Spain, vol. 54, no. 4, pp. 5–14, February 2009.

[3] S. Aggarwal, S. Choudhari, G. Das, and A. Gionis, “Automated
ranking of database query results,” In CIDR, vol. 46, no. 4, pp. 14–
21, February 2003.

[4] S. Boriah, V. Chandola, and V. Kumar, “Similarity measures for
categorical data: A comparative evaluation,” In Proceedings of
SIAM International Conference on Data Mining (SDM 2008), pp.
243–253, April 2008.

[5] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, “Query
recommendations for interactive database exploration,” In
Proceedings of SSDBM, New Orleans, LA, USA, pp. 3–18, June
2009.

35 AJCST Vol.5 No.1 January-June 2016

Design Enrichment of Query Forms for Database Query

