
Asian Journal of Computer Science and Technology

ISSN: 2249-0701 (P) Vol.7 No.2, 2018, pp.87-91

© The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ajcst-2018.7.2.1865

A Sound Assessment of Test Suite Minimization Techniques

Fayaz Ahmad Khan
Department of Computer Science and Applications, Barkatullah University, Bhopal, Madhya Pradesh, India

E-Mail: kfayaz1012@gmail.com

Abstract - During software development, testing and re-testing

occurs frequently to ensure that the software is working

correctly before and after modifications. To carry out an

effective testing process a test suite is created and executed to

detect the faults in the existing code as well as in the modified

code. The manual approach of test suite creation and execution

is time consuming and labour intensive task as compared to

automatically generated test data or test suite. The automatic

test data generation is supposed to be an effective way, but a

lot of redundant test cases are generated that increase the time,

effort and cost of testing. Therefore, test suite minimization

techniques are used to further minimize or reduce the number

of test cases by selecting a subset from an initially random and

large test suite to test the code before as well as after

modification. In this study, a comprehensive analysis of the

different test suite minimization techniques is presented in

order to extend the existing studies and to propose new ideas in

this direction.

Keywords: Software Testing, Regression Testing, Test Suite

Minimization

I. INTRODUCTION

Due to the application of automated test data generation

techniques [1-10], a large number of test cases are generated

which are redundant and execute the same requirements

multiple times. Automatic test data algorithms are usually

exhaustive with respect to the specified coverage criteria.

Therefore, depending on the enormity of the model, these

algorithms or the tools based on them create a huge number

of test cases that are infeasible to be considered for practical

execution [1-10]. Also, most of the test cases can be

redundant in the sense of exercising common features of the

code under test (for example, the same lines of code) and

revealing same sets of defects [11]. So, most of the times,

running an entire automatically generated test suite is not an

adequate way as it will consume a significant amount of

time and resources during regression testing. Also, in

software testing, a single test case from an infinite input

domain of program variables can hardly satisfy all the test

requirements. Therefore, to find an optimal or sub set of test

cases from usually large infinite domain of test cases that

can satisfy the same requirements as the original test suite is

a research problem commonly known as test suite reduction

or test suite minimization [11]. The obvious reasons that

make test cases redundant are (1) due to changes or

modifications in code their input/output relation is no longer

remains meaningful, (2) these inputs were generated for a

specific program that has undergone modification or (3)

their structure is no longer in compliance with the software

coverage [12, 13]. Harrold and Gupta in [11] defined the

test suite minimization as follows:

Given: A test suite ST, a set of test requirements {r1,r2 . . . ,

r(n)}, that must be satisfied to provide the desired testing

coverage of the program, and subsets of ST, T1, . . . , T(n),

one associated with each of the ri’s such that any one of the

test cases tj belonging to Ti can be used to test ri’s.

Problem: Find a representative set, T
/
, of test cases from T

that satisfies all ri’s.

The testing criterion is satisfied when every test requirement

in {r1, r2. . . , r(n)} is satisfied. A test requirement, ri, is

satisfied by any test case, tj, that belongs to the Ti, a subset

of T [11]. Trying to find the minimal hitting set of a test

suite that covers the same set of requirements covered by

the original test suite is a NP-complete problem [11]. NP-

completeness of the test suite minimization problem

encourages the usage of different techniques based on

heuristics, genetic algorithm and integer linear

programming [11]. The basic classification of test suite

minimization techniques is shown in figure 1.

Fig. 1 Classification of Test Suite Minimization Techniques

A. Greedy Techniques

The most widely used test suite reduction or minimization

techniques are greedy in nature [11, 14, 15]. Greedy

techniques make locally optimal choice of test cases with a

hope that the choice will be globally optimal one. The

following are some of the important techniques developed

for the minimization of test suites:

In 1993, Harrold et al. [11] proposed a greedy heuristic

algorithm that help in managing the test suite by identifying

and removing the obsolete test cases with respect to a given

set of test requirements. The goal of the technique is to find

AJCST Vol.7 No.2 July-September 2018

(Received 6 July 2018; Revised 19 July 2018; Accepted 5 August 2018; Available online 12 August 2018)

the essential test cases form the test suite that when

removed some test requirements can never be fulfilled [11].

The algorithm begins by computing cardinality of all the

test cases and then, selects the test cases in increasing order

of the cardinalities until all requirements are satisfied.

In 1993 and in1998, Wong et al. [16, 17], conducted a

number of empirical experiments to show the effect of

minimization on the fault detection effectiveness of reduced

test suites. Wong et al; performs minimization with respect

to all-uses criterion and their results confirms that

significant test suite reduction can be achieved with a little

to no loss in fault detection effectiveness.

In 1996, Chen and Lau [18] proposed another greedy

heuristic algorithm for test suite minimization based on the

mix of three strategies: the greedy strategy, the essential

strategy, and 1-1 redundancy strategy. The greedy strategy

proceeds by selecting test cases that have satisfied the

maximum quantity of not-yet satisfied test requirements

[18]. The essential strategy is used to select the essential test

cases and the 1-1 strategy is used to remove all the 1-1

redundant test cases. In each step, all the three strategies

select one test case and the selection process continues

when all the test requirements are satisfied.

In 1998 and 2002, Rothermel et al in [19, 20], also

conducted different experiments to study the impact of test

suite minimization on the fault detection effectiveness loss.

The experiments on Siemens suite showed that the size of

the test suite is significantly reduced but at the cost of

decreased fault detection effectiveness. The experiments

conducted by Wong et al. [16, 17] and Rothermel et al [19,

20] differ in the following number ways:

1. The subject programs in both the studies were different.

2. The minimization approaches in both studies were also

different.

3. The requirement criterion was also different. Rothermel

et al. uses edge coverage while Wong et al. uses all

uses criteria for minimization.

4. The test case generation techniques were also distinct,

Rothermel et al. generated test cases using various

white box and Black-box testing criteria while as Wong

et al. uses a random generated test suite.

In 2005, Tallam and Gupta [21], proposed another greedy

heuristic approach known as Delayed-greedy for the test

suite minimization. The Delayed-greedy approach exploits

both the implications among the test cases and the

implications among the requirements and then removes the

implied rows and columns in the table. A potential

weakness of the traditional greedy approach is that the early

selection made by them can eventually be rendered

redundant by test cases subsequently selected. For example,

consider the table 1, which shows the relation between test

cases and test requirements. The traditional greedy

approaches will choose t1 first as it satisfied the maximum

number of testing requirements, and then continues to select

t2, t3 and t4. However, after the selection of t2, t3 and t4, t1

is considered redundant. Tallam and Gupta tried to

overcome this potential weakness by developing a concept

lattice using delayed greedy approach. The delayed-greedy

performs in three main phases:

1. Applies object reductions (i.e., remove test cases which

test requirements is subsumed by other test cases).

2. Apply attribute reductions (i.e., remove test

requirements that are not in the minimal requirement

set) and

3. Build reduced test suite from the remaining test cases

using a greedy method [11].

The minimized test suite by this approach will be either the

same size or smaller than those minimized using traditional

greedy approaches.

TABLE 1 RELATIONSHIP MATRIX (BETWEEN TEST CASES AND

REQUIREMENTS) [62]

In 2005, Jeffrey and Guppta [21], proposed a modified form

HGS algorithm [11] known as Reduction with Selective

Redundancy in order to retain redundant test cases to ensure

that reduction did not compromise the fault detection ability

of the minimized test suite. The proposed algorithm deals

with the limitations of traditional single-criterion

minimization techniques by taking in account several sets of

testing demands (e.g., coverage of different entities) and

introducing selective redundancy in the minimized test

suites. For example see Table 2, Jeffrey and Gupta [21]

tried to generate a satisfactory minimized branch coverage

test suite by keeping some redundant test cases and collect

the coverage information for secondary criteria, such as the

all def-use pair’s criteria, for all the test cases in the test

suite T.

TABLE II BRACH COVERAGE INFORMATION FOR TEST CASES IN [63]

TEST CASES B1
T
 B1

F
 B2

T
 B2

F
 B3

T
 B3

F
 B4

T
 B4

F

t1 X X X

t2 X X X X

t3 X X X

t4 X X X X

t5 X X X X

AJCST Vol.7 No.2 July-September 2018

Fayaz Ahmad Khan

In the example presented by Jeffrey et al. [21], after

inserting t1 and t2 in the minimized suite by HGS algorithm

[11], t3 is described as redundant with respect to branch

coverage since all the branches covered by t3 are already

covered by t1 and t2. Jeffrey et al. [21] did not throw away

t3, but verify it with respect to the secondary coverage

criteria and do not identify t3 as redundant and add it to the

minimized test suite. Next, either t4 or t5 needs to be chosen

to cover the branch BT4 and finally, they added t4 to the

constituted test suite and mark the requirement BT4 as

coverage. Therefore, the final minimized test suite

generated by their approach for this example is {t1, t2, t3,

t4} as they identified t5 redundant with respect to both the

adequacy criterions. Jeffrey et al. in [63], proceeded with an

empirical evaluation using branch coverage as the first set

of testing requirements and all-uses coverage information

obtained by data-flow analysis.

In 2007, Scott & Atif [22] defined a new metric for

coverage based test suite reduction based on the average

probability of detecting each fault. As most approaches to

test suite reduction are based on eliminating test cases

redundant with respect to some coverage criterion.

Consequently, no existing procedures determine the

likelihood of various coverage criteria to force coverage-

based reduction that retains test cases in order to expose

specific set of faults.

In 2008, Sampath et al [23] used the concept lattice to

identify reduced test set that provide the same coverage as

the original one. They presented three strategies, including

the tie-breaker concept, for integrating customized usage-

based test requirements with existing test requirements to

increase the effectiveness of reduced test suites. However,

the reported work is more specific for web application

testing. In their work, they also proposed a metric called

Fault Detection Density (FDD), to understand the spread of

how many faults are detected with the test cases.

In 2009, Jun & Chin [24] proposed a new technique for test

suite reduction called Reduction with Tie-Breaking (RTB).

The techniques uses additional criterion to break the ties

during the reduction process. In their study, it was also

suggested that all existing test suite minimization techniques

could be integrated into this framework through the

proposed decision process in order to produce more

effective results.

In 2010, Saeed & Alireza [25], proposed a Bi-Objective

Greedy (BOG) algorithm that addresses the fault detection

effectiveness. The proposed technique begins with the

construction of test case requirement matrix and then it is

multiplied by its transposed matrix to generate the

multiplied matrix. The diagonal elements denote the number

of unmarked requirements between the test cases while the

non-diagonal elements represent the minimum overlap in

requirement coverage with other test cases in the matrix

[25]. In next step the diagonal elements of the multiplied

matrix are updated for unselected test cases and if the

diagonal value of the matrix become’0’ the corresponding

test case is discarded and is considered redundant [25]. In

this way the algorithm finally selected most favorable test

cases that detect faults until the coverage of the test

requirements was achieved.

II. SEARCH BASED TECHNIQUES

Search Based Software Engineering is an emerging

paradigm in which search based optimization algorithms are

used to balance multiple software engineering objectives.

Search based software engineering techniques have been

used to solve various issues associated with software testing

McMinn [26, 27].

Local search techniques get trapped in local optima, so

global search techniques also known as “Evolutionary

Testing” approaches like Genetic Algorithms have been

considered and applied in various software testing domains

[26, 27]. They are characterized by iterative procedures that

work in parallel on a number of potential solutions for a

population of individuals. Genetic Algorithms differ from

local search techniques in that they maintain a population of

candidate solutions rather than just one solution [27]. The

population is, therefore, capable of sampling many points at

once and, thus, is more robust to entrapment in local optima.

In 1999, Mansour & El-Fakih [27], adapted a hybrid genetic

algorithm to the test suite reduction problem.

In 2005, Ma et al. [28] investigated the application of

Genetic Algorithm for the test suit minimization problem.

Ma et al. instead of using code coverage criterions,

proposed cost-aware criterion that is the combination of a

block based coverage criterion and a test-execution cost

criterion for test suite reduction. However, it leads to the

loss as the complexity of the test increases.

In 2011, Arvinder & Shivangi [29], proposed a Bee Colony

Optimization algorithm using the concept of worker bees,

scout and forager bees for maximum fault coverage of the

test suites. In their work, Average Percentage of Fault

Detection (APFD) metric was also proposed.

A. Integer Programming Language Based Techniques

In 2004, an improved effort was proposed by Black et al.

[30] to overtake the limitation of existing approaches.

Black et al. [30] approach is based on two objectives:

minimization up to a particular coverage while

simultaneously trying to enhance the fault detection rate

with respect to a specific fault using an integer linear

programming solver. The main idea behind their approach

is to formulate the minimization as a binary linear

programming problem with a weighting factor that will

determine the degree to which each of the two objectives

contribute influence toward the final outcome. But, the

major limitations of Black et al [30] approach is that its

scope is limited to few problems and the fault detection was

also concerned to a single fault (rather than several faults),

AJCST Vol.7 No.2 July-September 2018

A Sound Assessment of Test Suite Minimization Techniques

and there may be limited confidence that the minimized test

suite be useful in detecting several other faults.

In 2009, Hsu and Orso [31] such as Black et al. [30] also

observed the fact that the majority of the proposed

minimization techniques have two limitations: they perform

minimization based upon a single criterion and produce

approximated suboptimal solution. Hsu and Orso [31]

extended the work of Black et al. [30] using a multi-criteria

ILP formulation: the weighted-sum approach, the prioritized

optimization and a hybrid approach. The possible weakness

of these approaches is that they require additional input

from the user in the forms of weighting coefficients or

priority assignment, which might be biased, unavailable or

costly to provide.

The other useful technique proposed in 2012, by

Kapfhammer et al [32] for database applications testing.

Database applications are commonly implemented and used

in both industry and academia. Database applications are

complex and rapidly evolving applications and often

undergo rapid changes in the source code of the program

and the state and structure of the database [32]. So to avoid

any bad effect due to frequent changes in code, the approach

removes all the redundancy from the test suite before

applying it [32].

In 2013, Loreto et al [33] also proposed a technique based

on post optimization algorithm. Loreto et al represents the

test suite interaction using a covering array and the

objective was to reduce the number of rows in the array.

When wild cards were detected, the rows in the covering

array were merged. In this way, the rows in the covering

array were reduced which ultimately reduce the entire test

suite size.

In 2014, Khan et al. [34, 35, 36] utilized data clustering

algorithms for the test suite minimization. The goal of the

studies [34, 35, 36] is to apply data clustering algorithms to

partition the test suite into multiple partition or segments as

the initial test suite is found to be redundant and large in

size. Khan et al [34, 35, 36] claim to have achieved

minimization through data clustering by grouping the

similar or redundant test cases into the appropriate clusters

and then selecting a single test case from each of the

clusters to create a subset from the whole test suite. But the

main drawback of the study [34, 35, 36] is that the

minimization or reduction was carried-out without taking

the code coverage criteria into consideration.

In 2017, Khan et al. [37] proposed an efficient heuristic

based test suite minimization approach that takes multiple

code coverage criteria’s into consideration. The

minimization was carried out in [37] on statement coverage,

branch coverage and independent path coverage matrices

individually and after that the union of all the test suite is

calculated to form a single minimized test suite and to

further remove the redundant test cases. But, the drawback

of the study [37] is that it calculates the representative

subset from each matrix individually and also, it at any

instant generates the subset from the top-down fashion

while leaving other test cases with un-noticed. Therefore,

further work in this direction is possible to enhance the

working of the proposed approach for better results.

III. CONCLUSION AND FUTURE DIRECTIONS

Automatic test data generation techniques generate lot of

test cases which are found redundant and are infeasible to

be considered for practical execution. Hence, due to

automatic test data generation and limited time in regression

testing, running an entire test suite is not considered an

adequate practice due to time and resource constraints.

Therefore, in this study a detailed discussion on the test

suite minimization problem, its need and different

techniques is presented. Further work in this direction can

be extended in order to further improve the existing

techniques discussed in this study and new techniques could

also be proposed to get the better results in order to reduce

the time, effort and cost in regression testing.

REFERENCES

[1] A. K Gupta and F. A. Khan, “An Efficient Test Data Generation

Approach For Unit Testing”, IOSR (JCE), Vol. 18, No. 4, Ver. V,

pp. 97-107, 2016.

[2] B. Korel, “Automated software test data generation”, IEEE
Transactions on Software Engineering, Vol. 16, No. 8, pp. 870–879,

1990.

[3] D. Cohen, I. C. Society, S R Dalal, M L Fredman and G C Patton,
“The aetg system: An approach to testing based on combinatorial

design”, IEEE Transactions on Software Engineering, Vol. 23, pp.

437–444, 1997.

[4] R. Lammel and W. Schulte, “Controllable combinatorial coverage in

grammar-based testing”, In TestCom, pp. 19–38, 2006.

[5] P. Purdom, “A sentence generator for testing parsers”, BIT, Vol. 12,
No. 3, pp. 366– 375, 1972.

[6] Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Artoo, adaptive random

testing for object-oriented software”, In 30th International
Conference on Software Engineering, pp. 71–80, 2008.

[7] C. Csallner and Y. Smaragdakis, “Jcrasher, An automatic robustness

tester for java”, Software Practice Experimentation, Vol. 34, No. 11,
pp. 1025–1050, 2004.

[8] C. Pacheco and M. D. Ernst, “Eclat: Automatic generation and

classification of test inputs”, In ECOOP, pp. 504–527, 2005.
[9] W. Visser, C. S. Pasareanu and S. Khurshid, “Test input generation

with java pathfinder”, In ISSTA, pp. 97–107, 2004.

[10] T. Xie, D. Notkin, “Automatically identifying special and common
unit tests for object-oriented programs”, In ISSRE, pp. 277–287,

2005.

[11] M. J. Harrold, R. Gupta and M. L. Soffa, “A methodology for

controlling the size of a test Suite”, ACM Transactions on Software

Engineering and Methodology, Vol. 2, No. 3, pp. 270– 285, 1993.

[12] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer and R. S. Roos,
“Time aware test suite prioritization”, in International Symposium on

Software Testing and Analysis (ISSTA 06). Portland, Maine, USA,

ACM Press, pp. 1–12, 2006.
[13] S. Yoo and M. Harman, “Pareto efficient multi-objective test case

selection”, in International Symposium on Software Testing and

Analysis (ISSTA’07), ACM Press, pp.140–150, July 2007.
[14] T. Y. Chen and M. Lau, “Dividing strategies for the optimization of a

test suite”, Information Processing Letters, Vol. 60, No. 3, pp. 135–

141, 1996.
[15] J. W. Lin and C. Yu. Huang, “Analysis of test suite reduction with

enhanced tie-breaking techniques”, Journal of information and

software technology, Vol.51, pp. 679-690, 2009.

AJCST Vol.7 No.2 July-September 2018

Fayaz Ahmad Khan

[16] W. E. Wong, J. R. Horgan and A. P. Mathur, “Effect of test set

minimization on the fault detection effectiveness”, Software Practice
and Experience, Vol. 28, No. 4, pp. 347-369, 1999.

[17] W. E. Wong, J. R. Horgan, A. P. Mathur and A. Pasquini, “Test set

size minimization and fault detection effectiveness: A case study in a
space application”, Journal of Systems and Software, Vol. 48, No. 2,

pp. 79-89, 1999.

[18] G. Rothermel, M. J. Harrold, J. Ostrin and C. Hong, “An empirical
study of the effects of minimization on the fault detection capabilities

of test suites”, In Proceedings of the International Conference on

Software Maintenance, ICSM, Washington, DC, USA, pp. 34–43,
1998.

[19] G. Rothermel, M. J. Harrold, J. V. Ronne and C. Hong “Empirical

Studies of Test-Suite Reduction”, In Journal of Software Testing,
Verification, and Reliability, Vol. 12, No.4, pp. 219-249, 2002.

[20] S. Tallam and N. Gupta, “A concept analysis inspired greedy

algorithm for test suite minimization”, SIGSOFT Software
Engineering Notes, Vol. 31, pp. 35–42, 2005.

[21] D. Jeffrey and N. Gupta, “Test suite reduction with selective

redundancy”, In Proceedings of the 21st IEEE International
Conference on Software Maintenance, IEEE Computer Society, pp.

549–558, 2005.

[22] M. C. Scott Master and A. Memon, “Fault detection probability
analysis for coverage based test suite reduction”, in proceedings of

the 21st IEEE International Conference on Software

Maintenance, 2007, pp. 335-344.
[23] D. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, A. Gunes,

“Prioritizing User- Session bases test cases for Web Application
Testing”, International Conference on Software Testing

verification and validation (ICST), pp.141-150, 2008.

[24] P. Saeed, K. Alireza, “On the optimization approach towards test
suite minimization”, International Journal of Software Engineering

and its Applications, Vol. 1, No. 4, pp. 15-28, 2010.

[25] P. McMinn, “Search-based software test data generation: a survey”,
Software Testing Verification and Reliability, Vol. 14, No. 2, pp. 105-

156, 2004.

[26] M. Harman, “The Current State and Future of Search Based Software
Engineering”, In Proceedings of the 29th IEEE International

Conference on Software Engineering (ICSE 2007), Minneapolis,

USA, Vol. 34, No. 5, pp. 342–357, 2007.

[27] N. Mansour and K. El- Fakih, “Simulated annealing and genetic

algorithms for optimal regression testing”, Journal of Software
Maintenance, Vol.1, No.1, pp. 19-34.

[28] X. Y. Ma, Z. F. He, B. K. Sheng, and C. Q. Ye, “A Genetic

Algorithm for Test-Suite Reduction”, IEEE International Conference
on Systems, Man and Cybernetics, Vol.1, pp. 133- 139, 2005.

[29] K. Arvinder, G. Shivagi, “A Bee Colony optimization algorithm for

fault coverage based regression test suite prioritization”, International
Journal of Advanced Science and Technology, Vol. 29, pp. 17-30,

2011.

[30] J. Black and E. Melachrinoudis e David Kaeli, “Bi-criteria models for
All uses test suite reduction”, In Proceedings of the 26th

International Conference on Software Engineering, ICSE ’04, IEEE

Computer Society, pp. 106–115, 2004.
[31] H. You Hsu and A. Orso, “MINTS: A general framework and tool for

supporting test-suite minimization”, IEEE Computer Society, pp.

419–429, 2009.
[32] GM. Kapfhammer, “Towards a method for reducing the test

suites of database applications”, Proceedings of the 5th

International Conference on Software Testing, Verification
and Validation, (ICST 2012), pp.964-965, 2012.

[33] G. H. Loreto, T. J. Jose, R. V. Nelson and B. R. Josue, “A Post-

optimization strategy for combinatorial testing: test suite reduction
through the identification of wild cards and merge of rows”,

Advances in Computational Intelligence Lecture Notes in Computer

Science, Vol. 7630, pp. 127-138, 2013.
[34] F.A. Khan, A.K. Gupta and D.J. Bora. "Profiling of Test Cases with

Clustering Methodology”, International Journal of Computer
Applications Vol.106, No. 14, pp. 32-37, November, 2014.

[35] F.A. Khan, A.K. Gupta and D.J. Bora, "An Efficient Approach to

Test Suite Minimization for 100% Decision Coverage Criteria using
K-Means Clustering Approach”, IJAPRR, Vol. II, No. VII, pp. 18-26,

2015.

[36] F.A. Khan, A.K. Gupta and D.J. Bora, “An Efficient Technique to
Test Suite Minimization using Hierarchical Clustering Approach”,

International Journal of Emerging Science and Engineering (IJESE),

ISSN: 2319–6378, Vol. 3, No. 11, September, 2015.
[37] F.A. Khan, A.K. Gupta and D.J. Bora, “An Efficient Heuristic Based

Test Suite Minimization Approach”, Indian Journal of Science and

Technology, Vol. 10, No. 29, pp. 1-8, August, 2017.

AJCST Vol.7 No.2 July-September 2018

A Sound Assessment of Test Suite Minimization Techniques

