
 Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.7 No.2, 2018, pp.11-17

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2018.7.2.1877

Optimizing the Software Metrics for UML Structural and Behavioral
Diagrams Using Metrics Tool

D. Singh1 and H. J. S. Sidhu2

1Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
2Department of Computer Applications, Desh Bhagat University, Mandi Gobindgarh, Punjab, India

E-Mail: diljitsingh007@gmail.com, jeetsinder@gmail.com

Abstract- In this paper, we have proposed an efficient way to
calculate the software metrics of structural and behavioural
diagrams of unified modelling language (UML) with the help
SD Metrics as a tool. This method is applied to measure the
internal quality of attributes and functions of structural and
behavioural diagrams of unified modelling language (UML).
The SD metrics tool collect the information after parsing the
XMI format generated by UML compiler of structural and
behavioural UML diagrams. The object-oriented design made
by structural and behavioural diagrams holds the important
part of designing in the development process of the software.
Early the measurement of metrics will lead to good quality of
the software from coding, but now using the design metrics we
calculate the cohesion, coupling and other metrics with easy
and effective with the fewer efforts which improve the quality
of software to be developed at the design phase.
Keywords: UML diagrams, Object-oriented design, Metrics,
Model-driven metrics

I. INTRODUCTION

The Unified Modeling Language (UML) is a representation
as a graphical view of a model for a system which partial
signifies the design and implementation of software to be
developed by the software team. The UML diagrams
contain the elements: The UML nodes that were connected
with edges and also known as paths to the different objects
or modules. The UML model might also contain the
different documentation like use-cases. The diagram is
basically defined by the graphical symbols which were
represented on the various UML diagram. A diagram where
the contents area are classes with all attributes well as
functions of class diagram[4] A diagram which represents
the use of classes is “class diagram”. A diagram which
represents the sequence of message exchanges between the
objects is called “sequence diagram”. In figure 1 list of
structural and behavioural diagrams are represented. The
structural view is represented by the UML diagrams show
the static structure of the full system and its parts of
different abstraction and implementation of the system and
shows us how they are related with one another. The
elements in a structure diagrams represent the valuable
concepts of a system, and which may include
implementation concepts as well, abstract and real world
also. The structure diagrams are not consuming time-related
concepts it does not show the details of the dynamic
behaviour of the scenarios.

Fig. 1 UML Diagram

However, they may represent the relationships to the
behaviours of the classifiers permitted in the various
diagrams.

Fig. 2 Flow Chart

In the figure2 the flowchart is represented, in which the
flow of our work is displayed. First of all the UML
diagrams are created according to the requirement of the
user with help of UML compiler like Agro UML, Plant
UML, etc. Secondly XMI code is generated with the help of
UML compiler and then the XMI code is taken as input for
the SD Metrics Tool at the last various attributes and
operations of the diagrams were evaluated and calculate the
cohesion and coupling and other metric.

11 AJCST Vol.7 No.2 July-September 2018

(Received 15 May 2018; Revised 10 June 2018; Accepted 28 June 2018; Available online 5 July 2018)

II. RELATED WORK

In this section, we briefly review the related work on the
importance of UML metrics. Most of our work reported in
metrics importance, technique and need for the UML
structural and behavioural diagrams of UML.
GargSushil et al., [15] purposed the aspect-oriented
programming which is a new paradigm for improving the
system’s features such as modularity, readability and
maintainability. Aspect-oriented software development is a
new technique to support the concerns in software
development. Coupling is an internal software attribute that
can be used to indicate the degree of interdependence.

R. Mall et al., [16] propose a technique for static slicing of
UML models. First, transform software architecture
specified using UML into an intermediate representation
named Model Dependency Graph (MDG). Model
Dependency Graph (MDG) combines information of
sequence diagrams along with the relevant information of
the model. For a given slicing criterion, slicing algorithm
traverses the constructed MDG to identify the relevant
model elements. Algorithm’s novelty lies in its computing a
slice-based UML model.

SikkaPreeti et al., [17] program slicing is proved in
breaking down the large program into the small relevant
parts that are needed as per the specified criteria. The
objective of this paper is the betterment of existing program
slicing techniques. Method / statistical analysis the
methodology is proposed to start slicing the software from
designing the various levels of the model and continue it
with source code level. VermaPreety et al., [12] for
measuring the software, appropriate metrics are needed. To
attain the various qualitative and quantitative aspects of
software. To measure the software in terms of quality, size,
efforts, efficiency, and reliability, performance etc. there are
different metrics available in software engineering and it
has been an area of interest for the various researchers.
Measures of specific attributes of the process, project and
product are used to compute Software metrics. This work
proposes a similar approach of measuring software using
various UML diagrams and applied Software size metric to
evaluate the size of the Software. All of the above authors
and number of other authors had proposed and implemented
the techniques for calculating the metrics for one of UML
diagram but we had purposed as well as implemented the
best optimal technique other than the above authors for
structural as well as behavioral diagrams to reduce the
testability as well as maintainability of the software.

III. INTRODUCTION TO CLASS CLASS DIAGRAM

AND SLICED CLASS DIAGRAM

In figure 1, class diagram and object diagram describes the
structure of the class and object. The class serves as a data
type for objects like in object-oriented unified modelling
language (UML). The class represents set of objects having
same responsibilities. An attribute is a named property of a

class. An attribute has a named type and defines the types of
its objects. Example name, roll and section are the attributes
in student class. An operation is a function or services that
the objects have to serve. Example, display (), add (), edit ()
and delete () are the operations in student class.

Fig. 3 Class and Object diagram

A. Creation of Class Diagram (UML)

The purpose of a class diagram is to depict the classes
within a model. In an object-oriented application, classes
have attributes (member variables), operations (member
functions) and relationships with other classes. The UML
class diagram can depict all these things quite easily. The
fundamental element of the class diagram is an icon the
represents a class. In figure 2, Class Diagram (Banking
system) represents the five classes bank class, customer
class, teller class, account class, loan class having their
independent attributes and operations.

Fig. 4 Class Diagram (Banking system)

B. Class Dependency Graph

In figure 3, Class Dependency Graph (CDG), classes and
their attributes, methods and their call parameters, together
with method return values are represented as different types

12AJCST Vol.7 No.2 July-September 2018

D. Singh and H. J. S. Sidhu

of nodes. These would be represented by using appropriate
dependence edges in the Class Dependency Graph (CDG).
The member dependence edges represent the class
memberships, while method dependence edges represent the
dependence of the call parameters and return values (if any)
on a method.

Fig. 5 Class Dependency Graph (CDG)

The data dependencies arise when the class methods, its
parameters and return values directly or indirectly make use
of the class attributes. In addition, data dependence edges
also represent the effect of the calling parameters on the
return value of a method. Relationship dependence edges
represent how a class is related to another class, or how an
instance of a class is related to the other class instances.

Fig.6 Slicing Graph of Class Dependency Graph (CDG)

In figure 4, Slicing Graph of Class Dependency Graph
(CDG) is generated according to the requirement, in which
customer and teller class are taken as a sliced criterion. At
the same time, Class Dependency Graph (CDG) represent
class relations in any different way compared to its
corresponding class diagram. For example, the arrow
represents generalization, aggregation, and composition
relations using the relationship dependence edges. An
association relation represents classes which are likely to
communicate with other classes due to a method invocation.

C. Calculation of Slice-Based Degree of Cohesion from
Class Dependency Graph

Slice-based cohesion metrics and details the formulae used
in their calculation. Worked examples, illustrating the
calculation of slice-based cohesion metrics for a class
dependency graph (CDG), Degree of Cohesion (DCH),
Number of Attributes Used (NAU), Total Number of
Attributes (TNA)

The degree of Cohesion (DCH) = NAU/TNA
For computing the Degree of Cohesion (DCH), the
connectivity between the classes and the number of
attributes used by the method of a class. In figure 4, “Slicing
Graph of Class Dependency Graph (CDG)” where two
classes customer and teller were taken as sliced criteria. The
degree of cohesion is shown with respect to the customer is
0.4 as well as with respect to the teller class the result is 1.0.
The cohesion is interaction within a class and coupling is
the interaction with the other classes. Always this high
cohesion and low coupling are recommended in the
software to develop successful software.

TABLE I DEGREE OF COHESION

Class Name NAU TNA DCH
Customer 2 5 0.4

Teller 2 2 1.0

D. Calculation of Slice-Based Degree of Coupling from

Class Dependency Graph

The degree of coupling is the ratio of a number of messages
received to the number of the message passed. For finding
the degree of coupling, message received coupling (MRC)
and the message passed coupling (MPC) is used, it is the
number of messages received and passed by a class. (MRC)
Message received coupling is the complexity of message
received by the classes, as MRC is the number of messages
received by a class from the other classes. (MPC) Message
Passed Coupling is denied as the number of the message
passed among objects of the classes. The degree of coupling
is given
Degree of coupling (DC) = MRC/ MPC

The degree of coupling is shown with respect to the
customer is 0.0 as well as with respect to the teller class the
result is 1.0. The cohesion is interaction within a class and
coupling is the interaction with the other classes. Always
this high cohesion and low coupling are recommended in
the software to develop successful software.

TABLE II DEGREE OF COUPLING

Class name MRC MPC DC
Class Customer 0 4 0

Class Teller 2 2 1

13 AJCST Vol.7 No.2 July-September 2018

Optimizing the Software Metrics for UML Structural and Behavioral Diagrams Using Metrics Tool

IV. CREATE SEQUENCE DIAGRAM OF UML

The UML Sequence Diagrams having time-dependent
sequences of interactions between objects. They show the
sequence of the messages. A Sequence Diagram has two
dimensions: the vertical dimension represents time, and the
horizontal dimension represents various instances. Normally
time proceeds from top to bottom. Sequence Diagrams
describe interactions among software components. In UML,
a message is a request for a service from one UML actor to
another.

Fig. 7 Sequence Diagram

In fig. 1 the Sequence Diagram of UML is showing the
various transactions of messages from one object to another
object there are two objects in the Sequence Diagram object
1 customer, object 2 cashiers and having a flow of messages
in the various directions. Each message is given a serial
number for ease of understanding. These message numbers
were taken in the explanation of scenarios and states in the
next step of the design and implementation.

A. Recognize States and Scenarios of Sequence Diagram

Considering Sequence Diagram (SD), convert the SD into a
Sequence Dependency Graph (SDG). The various States
and Scenarios are tabled as shown in Table II.

TABLE III SCENARIO TABLE

Scenario 1 Scenario 2 Scenario 3
STATE X STATE X S4 : (m4, b, b)

S1 : (m1, a, b) S2 :(m3, b, a) S5 : (m5, b, b)

S2 : (m2, b, b) END STATE X END STATE X

S6 : (m6, b, a) _ _ _ _

END STATE X _ _ _ _

B. Create Sequence Dependency Graph (SDG)

In this section, the transformation of the Sequence Diagram
into the Sequence Dependency Graph by using the scenarios
and states as discussed in the last section. The Sequence
Dependency Graph (SDG) is made for the representation of
the components of the Sequence Diagram and this

representation is helpful in making the slices of Sequence
Diagrams.

Fig. 8 Sequence Dependency Graph (SDG)

To create the Sequence Dependency Graph, this approach is
taken from Monalisa Sharma et al (2007) which describe the
nodes representing the various states; each node basically
represents an event. States S1, S2, S3, S4 and S5 represent
the transition from one object to another.

START STATE represents the object from where operation
begins.
END STATE represents the object at where operation ends.

In fig 2 the Sequence Dependency Graph of Sequence
Diagram represents the nodes and edges, the directed edges
show the direction from one node to another node.

C. Perform Dynamic Slicing on Sequence Dependency

Graph (SDG).

The Program slicing is the technique, which is used for the
computation of the program statements, the program slice
that may affect the value at some point of interest, refer to
as slicing criteria. We are using this technique of program
slicing, to make it applicable to the Sequence Dependence
Graph (SDG) of the Sequence Diagram (SD). The Diagram
basically indicates only the dynamic part, so the Dynamic
Slicing of the Sequence Dependency Graph is made.
Program slicing can be used in debugging to locate the
source of errors more easily. Other applications of slicing
include optimization, program analysis, and maintenance. A
dynamic slice contains all statements that actually affect the
value of a variable at a program point for a particular
execution of the program rather than all statements that may
have affected the value of a variable at a program point for
any arbitrary execution of the program. The dynamic slicing
of the Sequence Dependency Graph is done in figure 3.

Fig. 9 Dynamic slicing of the Sequence Dependency Graph

14AJCST Vol.7 No.2 July-September 2018

D. Singh and H. J. S. Sidhu

http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Optimization_(computer_science)
http://en.wikipedia.org/wiki/Program_analysis_(computer_science)

To clarify the difference between static and dynamic slicing,
In the case of static slicing, since we look at the whole
program unit irrespective of a particular execution of the
program. But, in the case of dynamic slicing, we consider a
particular execution of the program. Sequence diagrams
show the dynamic function and if we make the slices of the
Sequence Dependency Graph by taking the criteria as the
starting and end state of each transaction then in fig 4 a slice
1, slice 2, slice 3 is formulated from the fig 3 as the dynamic
program slicing. The next step of the thesis will calculate
the software metrics as cohesion and coupling.

D. Calculation of Slice-Based Cohesion of Sequence

Dependency Graph (SDG)

In this section after performing all the steps, the slice-based
cohesion metrics are calculated by using the formulas.
These formulas are basically used for calculation of the
statement based cohesion metrics in the earlier papers. The
slice based cohesion metrics can also be calculated by using
same formulas. Worked examples are shown, illustrating the
calculation of slice-based cohesion metrics for a Sequence
Dependency Graph(SDG). There are three slices 1,2,3 in fig
11 and their slice size is a number of nodes in each slice that
is 4,2,2 respectively.

A total number of nodes by combining all the slices is
module size that is 6 according to fig. In this example, the
various formulas were calculated as follows:
(Tightness is the number of nodes included in every slice
compared to the number)
Tightness (M) =

)(
int

Mlength
SL =

ulesize
esizeofslic

mod
=

TABLE IV TIGHTNESS FOR SLICES
Slice Name Tightness Results

S1 3/6=0.50

S2 1/6=0.16

S3 2/6=0.33

Coverage is a comparison of the length of the slices to the
length of the module

Coverage (M) = ∑
=





v

i Mlength
SL

V 1)(
1 =

)(mod).(ulesizeofslicesno
ssumofslice

×
= 6/3*6=0.33

Min coverage is the ratio of the size of the smallest slice to
the module size
Min coverage (M)=

SLii
Mlength

min
)(

1 =
ulesize

slicesize
mod
min = 1/6 = 0.2

Max coverage is the ratio of the size of the largest slice to
the module size
Max coverage (M) = SLii

Mlength
max

)(
1 =

ulesize
slicesize

mod
max =

3/6 = 0.5

Overlap(M)= =
∑
=





v

i SLi
SL

V 1

int1 =
ofslicesnoslicesize

tionsizeer
.

secint∑ =

3/6+1/6+2/6 = 0.99

E. Calculation of Slice-Based Coupling Of Sequence

Dependency Graph (SDG)

This section explains slice-based coupling metrics of the
sequence dependency graph. In slice-based coupling metric
as an alternative to information flow. They suggest that
basing the metric on slices “refine the idea of information
flow which has traditionally been associated with coupling
measurement”. Harman et al., define module f and g the
formula is given.

The coupling between two functions f and g is then defined
as

Coupling (f, g) =

)()(
)(),()(),(

glengthflength
glengthfgFFflengthgfFF

×
×+×

The above formula is basically used for the set of program
statements to find the coupling and now the same formulas
are also used for the calculation of the slice-based coupling
of Sequence Dependency Graph.

If Sequence Dependency Graph is considered then there are
two types of coupling which will have to be calculated
1. InterSlice Coupling
2. Intra Slice Coupling

InterSlice Coupling: It is the coupling between the slices
having a different end state.
Intra Slice Coupling: It is the coupling between the slices
having same end states.

These can be clearer when we take an example In fig 2 the
slice 1 and slice 2 having the same end state X so intra slice
coupling between the slice1 and slice 2.

TABLE V THE COUPLING BETWEEN SLICE1 AND SLICE2

Module
(g)

Module
size

Module
(f)

Common
 nodes Total

1 3 1 0 0

2 1 2 0 0

0+0/4 = 0

TABLE VI THE COUPLING BETWEEN SLICE2 AND SLICE 3

Module
(g)

Module
size

Module
(f)

Common
nodes Total

2 1 3 0 0

3 22 2 0 0

0+0/3 = 0

15 AJCST Vol.7 No.2 July-September 2018

Optimizing the Software Metrics for UML Structural and Behavioral Diagrams Using Metrics Tool

TABLE VII THE COUPLING BETWEEN SLICE1 AND SLICE 3

Module

(g)
Module

size
Module

(f)
Common

nodes Total

1 3 3 0 0

3 2 1 0 0
 0+0/5 = 0

Now the slice 1 and slice 2 having the same end state X but
slice 3 is having the different end state Z so interslice
coupling between (the slice1 and slice 3)and(the slice 2and
slice 3)

F. Observing Results of Cohesion and Coupling

The statistical tests are used to correlate the data. Pearson’s
linear correlation is used to quantify the relationship
between metrics. Such correlations measure linear
associations between variables. Same statistical tests are
also used for summarization of cohesion and coupling
metrics. The statistical significance can be summarized by
analyzing the values as
0.8 - 1.0 strong association
0.5 - 0.8 moderate association
0.0 - 0.5 weak or no association

A negative value indicates an inverse correlation. In our
example of this section, we get results having 0.0 coupling
so we are having weak or no association and moderate
cohesion, which is true and can be visualized by analyzing
the example interactions between the different states.

V. CREATE A STATE CHART DIAGRAM

In figure 1, Statechart Diagram of the banking system which
describes the dynamic working of the banking system, in
which there are seven states like states (S1, S2, S3, S4, S5,
S6 and S7). At state S1 customer fill the details in bank slip,
state S2 is for checking the account number filled by the
customer, state S3 is for deposit the amount in the bank,
state S4 is for the withdrawing the amount from the bank,
state S5 is for the check balance, state S6 is for the
withdrawing the amount as filled by the customer, and state
S7 is for the updating of account balance after withdrawing
or depositing the amount.

Fig. 10 Statechart Diagram of the Banking System

A. Create a State Dependency Diagram (STDG) from

Statechart Diagram.

Now, create a State Dependency Graph of the banking
system is created from the Statechart Diagram shown in
Figure 1, for that, first, Criteria Table of the banking system
is drawn from the Statechart Diagram of the banking
system. Using Criteria Table, State Dependency Graph of
the banking system is created in Figure 2.

B. Perform Dynamic Slicing on the Slices of the STDG

A Slicing technique is basically used to facilitate the process
of testing and debugging. For our research work, by
applying a dynamic slicing, the state of the object in these
types of the diagram is continuously changing. Dynamic
slices of the State Dependency Graph are shown in figure 3.
These slices result from the different possibilities which
have been drawn from Start State to End State. These
different possibilities are called the slices of the State
Dependency Graph of the Banking System. In our work,
there are three different slices which are as follows

Fig. 11 State Dependency Graph (STDG) of Banking System

1. Slice 1: Slice 1 is a first possibility to reach at End State

from Start State. This Slice is having S1, S2, S3 and S5
states.

2. Slice 2: Slice 2 is a second possibility to reach at End
State from Start State. This Slice is having S1, S2, S4
and S7 states.

3. Slice 3: Slice 3 is a third possibility to reach at End
State from Start State. This Slice is having S1, S2, S4,
S7 and S5 states.

Fig. 12 Dynamic Slicing on the Slices of the STDG

16AJCST Vol.7 No.2 July-September 2018

D. Singh and H. J. S. Sidhu

C. Calculating the Complexity Metrics of State Chart
Diagram

The various connecting lines of a specific state diagram
represent the interaction from one state to another state. The
more interactions there are, the higher the complexity of the
state transition graph. Actually, we are measuring the
relation of edges to nodes in a graph. The only here the
nodes are not statements, but the states and the edges are not
branches but interaction transitions.

TABLE VIII METRICS VALUES FOR XML CODE OF STATE CHART

DIAGRAM FROM SD METRICS TOOL

Name Trans States Conditions
Slice 1 5 4 0

Slice 2 5 4 0

Slice3 5 6 0

The design goal is to have as few transitions as possible
since every state transition has to be tested at least once and
that drives the test. The complexity of state chart diagram is
computed by the equation 1

𝐼

=
𝑁𝑟 𝑠𝑡𝑎𝑡𝑒𝑠

𝑁𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 + 𝑛𝑟 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠0

TABLE IX COMPLEXITY FOR SLICES

Name Complexity
Slice 1 0.80

Slice 2 0.80

Slice 3 0.83

VI. RESULTS AND DISCUSSION

According to the concept of Software Engineering, a system
will be understandable, if the Cohesion of the system is
high, means the high self-contained functionality of the
system is high and Coupling of the system is low, means
less interaction between the subparts of the system is low. If
a system has high Cohesion and Low Coupling, then that
system is an ideal system. Here the Complexity for
Slice1&2 is 0.80, and complexity for Slice 3 is 0.83. So,
using program Slicing gives accurate results if observed in
contrast to previous research on the metrics of the Statechart
diagram.

VII. CONCLUSION AND FUTURE SCOPE

All the classes are interrelated with each other. So the
concept of cohesion as well as the coupling is implemented.

The cohesion is interaction within a class and coupling is
the interaction with the other classes. Always this high
cohesion and low coupling are recommended in the
software to develop successful software. The cohesion and
coupling were the metrics and other metrics according to the
requirements will be calculated in future.

REFERENCES

[1] S.V. Kumar, Santosh, “Impact of coupling and cohesion in object-
oriented technology,” Journal of software engineering and
applications, Vol. 5, pp. 671-676, 2012.

[2] L. Kambow, D. Singh, “Visualizing the software metrics of state
chart diagram using program slicing,” International Journal of
Applied Information System (IJAIS), ISSN: 2249-0868, the
foundation of computer science, New York, USA, Vol. 2, pp. 9, 2013.

[3] T. Rani, M. Sanyal and S. Garg, “Measuring Software Design Class
Metrics: A Tool Approach,” International Journal of Engineering
Research &Technology (IJERT), ISSN: 2278-0181, Vol. 1, No. 7,
September 2012.

[4] Virtual Machinery, "Object-Oriented Software Metrics - Introduction
and overview", Virtual Machinery, [Online]. Available:
http://www.virtualmachinery.com/jhawkmetrics.htm.

[5] Kumar and S.K. Khalsa, “Determining cohesion and coupling for
class diagram through slicing techniques”, IJACE, Vol. 4, No.1, pp.
19-24, Jan-June 2012.

[6] D. Singh and A. Kamra, “Measuring Software design metrics of
UML Structural and behavioural diagrams,” International Journal of
computer &Mathematicl Sciences (IJCMS), ISSN: 2347-8527, Vol. 6,
No. 5, May 2017.

[7] M. Genero, “Defining and validating metrics for conceptual models,”
[PhD thesis]. University of Castilla-La Mancha, 2002.

[8] Weyuker, “Evaluating software complexity measures,” IEEE
Transactions on Software Engineering, 14(9), pp.1357-1365, 1998.

[9] S. Chidamber, “A metrics suite for object-oriented design”, IEEE
Transactions on Software Engineering, June 1994.

[10] M. Seyyed, “Object-Oriented Metrics”, Sharif University of
Technology, International Journal of Science And Research,
Department of Computer Engineering, January 2006.

[11] T. Mythili, “Quality Metrics Tool for Object-Oriented
Programming”, International Journal of Computer Theory and
Engineering, Vol. 2, No. 5, October 2010.

[12] P. Verma, “Effect of different UML diagrams to evaluate the size
metrics for different software projects”, Global Journal of Computer
Science and Technology Software and Engineering, Vol. 15, No. 8,
version 1.0, February. 2015.

[13] N. Ana, “Evolution of Object-Oriented Coupling Metrics: A
Sampling of 25 Years of Research,” RWTH Aachen Univ., Aachen,
Germany Horst Lichter , Yi Xu, pp. 16-18, May 2015.

[14] Alshammari “A Hierarchical Security Assessment Model for Object-
Oriented Programs,” Fac. of Science & Technol., Queensland Univ.
of Technol., Brisbane, QLD, Australia, Colin Fidge, Diane Corney,
pp. 13-14, July 2011.

[15] S. Garg, K.S. Kahlon and P.K. Bansal, “How to Measure Coupling in
AOP from UML Diagram” International Journal of Computer
Science and Telecommunications, Vol. 2, No. 8, November 2011.

[16] Jaiprakash, T. Lallchandani and R. Mall,“Static Slicing of UML
Architectural Models,”Journal of Object Technology, vol. 8, No. 1,
pages 159–188, January– February 2009.

[17] P. Sikka and K. Kaur, “Mingling of Program Slicing to Designing
Phase”, Indian Journal of Science and Technology, Vol. 9, No. 44,
DOI: 10.17485/ijst/2016/v9i44/105091, November 2016.

17 AJCST Vol.7 No.2 July-September 2018

Optimizing the Software Metrics for UML Structural and Behavioral Diagrams Using Metrics Tool

	I. INTRODUCTION
	II. RELATED WORK
	III. INTRODUCTION TO CLASS CLASS DIAGRAM AND SLICED CLASS DIAGRAM
	A. Creation of Class Diagram (UML)
	B. Class Dependency Graph
	C. Calculation of Slice-Based Degree of Cohesion from Class Dependency Graph
	D. Calculation of Slice-Based Degree of Coupling from Class Dependency Graph
	A. Recognize States and Scenarios of Sequence Diagram
	B. Create Sequence Dependency Graph (SDG)
	C. Perform Dynamic Slicing on Sequence Dependency Graph (SDG).
	D. Calculation of Slice-Based Cohesion of Sequence Dependency Graph (SDG)
	E. Calculation of Slice-Based Coupling Of Sequence Dependency Graph (SDG)
	F. Observing Results of Cohesion and Coupling
	A. Create a State Dependency Diagram (STDG) from Statechart Diagram.
	B. Perform Dynamic Slicing on the Slices of the STDG
	C. Calculating the Complexity Metrics of State Chart Diagram

	VI. RESULTS AND DISCUSSION
	VII. CONCLUSION AND FUTURE SCOPE

