
Asian Journal of Computer Science and Technology

ISSN: 2249-0701 (P) Vol.7 No.2, 2018, pp.70-74

© The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ajcst-2018.7.2.1881

Performance Analysis of Parallelized Bioinformatics Applications

1
Dhruv Chander Pant

1
 and O. P. Gupta

2

Research Scholar, I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India
2
Associate Professor, Punjab Agricultural University, Ludhiana, Punjab, India

E-Mail: dpant9@gmail.com

Abstract - The main challenges bioinformatics applications

facing today are to manage, analyze and process a huge

volume of genome data. This type of analysis and processing is

very difficult using general purpose computer systems. So the

need of distributed computing, cloud computing and high

performance computing in bioinformatics applications arises.

Now distributed computers, cloud computers and multi-core

processors are available at very low cost to deal with bulk

amount of genome data. Along with these technological

developments in distributed computing, many efforts are being

done by the scientists and bioinformaticians to parallelize and

implement the algorithms to take the maximum advantage of

the additional computational power. In this paper a few

bioinformatics algorithms have been discussed. The

parallelized implementations of these algorithms have been

explained. The performance of these parallelized algorithms

has been also analyzed. It has been also observed that in

parallel implementations of the various bioinformatics

algorithms, impact of communication subsystems with respect

to the job sizes should also be analyzed.

Keywords: Applications, Bioinformatics, High Performance

Computing, Parallel Computing

I. INTRODUCTION

A. Bioinformatics

Bioinformatics is a swiftly unfolding multifaceted field

where different techniques of computer science are applied

to solve compute intensive biological problems. Due to

technological augmentation, volume of molecular data is

increasing expeditiously [1], [2]. With the enormous

amounts of data, the challenge of bioinformatics is to store,

manage, analyze and interpret the sequence data [3].

Generally the bioinformatics applications deal with the

applications in the following areas:

1. To manage and process the huge volume of genome

data.

2. To reduce data analysis time.

So break through technological development was needed to

solve many critical problems with various bioinformatics

applications [4], [15]. Such data management is impractical

with the help of uni-processor computers. So the use of

parallel computing in bioinformatics applications is

important [5], [16]. Now to deal with bulk amount of

genome data distributed computers, cloud computers and

multi-core processors are also available at very low cost.

B. Parallel Computing Architectures

In parallel computing a problem is broken into discrete parts

and instructions of different parts run on different CPUs

concurrently as shown in Figure 1.

Fig. 1 Concept of Parallel Computation

In parallel computation a computing resource may be a

single computer with multiprocessors, different number of

computers connected by a network, multi core processors or

the combination. And the problem should be able to be

broken into different parts that can run simultaneously [6].

The various advantages of using parallel computing are:

1. Save time and/or money

2. Solve larger problems

3. Provide concurrency

4. Use of non local resources

Parallel computer systems can be classified into two main

models: Single Instruction Multiple Data (SIMD) Systems

and Multiple Instructions and Multiple Data (MIMD)

Systems as shown in Figure 2. A SIMD system consists of

multiple simple processors with small local memory. These

processors use explicit communication to transfer data to

each other. All the different processors should be strongly

synchronized. Because of the complexity and inflexibility,

SIMD systems are not used for very advanced applications.

MIMD systems are more suitable to bioinformatics

applications. In MIMD machines each process executes

completely independent of the other process

asynchronously. MIMD systems are further classified on

the bases of shared and distributed memory. A process

70AJCST Vol.7 No.2 July-September 2018

(Received 25 June 2018; Revised 12 July 2018; Accepted 29 July 2018; Available online 10 August 2018)

running in the shared memory system can access any local

or remote memory of the system whereas a process running

in distributed memory cannot. Shared memory systems

have many advantages for bioinformatics applications.

Design of parallel programs is simplified with a single

address map. Different processes can also communicate

without any time loss, because every CPU has direct access

to memory. Whereas in distributed memory systems a time

penalty is incurred for intercrosses communication because

of the lack of a single address map for the memory.

Fig. 2 Summarized Parallel Architectures

Current trends in multiprocessor design try to utilize the

positive factors of both the architectures. Each CPU has

some local memory attached to it and hardware creates an

illusion of common memory shared by the whole system.

So the memory installed in any node may be accessed by

any other node with very low less time penalty. But as now

very fast processors are available in the work stations, so

microcomputers are connected with the help of Local Area

Network. In this way virtual parallel computers are

developed. These computers are also called Multi-

computers which are constructed with the help of Cluster of

Workstations (CoWs). One more architecture of multi –

computers is Beowulf – clusters which consist of very

simple hardware components like ordinary PCs. In this

architecture a public domain server controls the whole

cluster.

II PARALLELIZED IMPLEMENTATION OF

DIFFERENT BIOINFORMATICS ALGORITHMS

A. Cluster Implementation of Sequence Alignment

Algorithms

Smith waterman algorithm is used for local alignment

between two sequences [7]. The algorithm is based on

dynamic programming technique. If the two sequences of

size n are to be matched then algorithm takes time O (n*n).

As the value of n increases the time required becomes

significantly high. Thus the need of parallel implementation

of Smith waterman algorithm arises [8]. In smith waterman

algorithm is implemented on clusters. The results of this

cluster implementation are shown in Table 1.

In parallelization of the algorithm pipelining is used. In the

score matrix, each row is computed sequentially and is

blocked till the required cells in the above row are

computed. When 32 processors are used with a sequence of

5000 characters long, the implementation showed an

improvement up to 10.30 times. Smith waterman algorithm

is also parallelized by its implementation on cell broadband

engine [9]. In this implementation a static load balancing

strategy is used. Under this strategy, work load at the

beginning is divided equally among all the processors and

processes. In the first step, algorithm reads the input dataset.

In the next step the input sequences are processed by

processing units to acquire the respective sequence parts in

their local memories. For a sequence of 2048 characters

long with this algorithm a speed up of 6.5 times is obtained.

For multiple sequence matching multiple sequence

alignment algorithms are used [10]. If there are n sequences,

n*(n-1)/2 pair-wise alignments need to be calculated. As the

number of sequences increase, number of pair wise

alignments also increase and the complexity of the

algorithm also.

71 AJCST Vol.7 No.2 July-September 2018

Performance Analysis of Parallelized Bioinformatics Applications

TABLE I PARALLEL IMPLEMENTATION OF SEQUENCE ALIGNMENT ALGORITHMS ON CLUSTER

Job Size
Sequential Parallel algorithm, np cores

(Bytes) Algorithm 4 8 16 32 64 128

500 0.24 0.3 0.2 0.1 0.1 0.5 1.3

1000 1.7 2.7 1.5 0.9 0.6 1.1 1.5

1500 5.9 8.8 4.8 2.9 1.8 1.7 2.1

2000 13.9 20.3 10 6.3 3.7 3.2 3.4

2500 26.2 39.5 21 11.6 6.9 5.1 4.5

3000 45.5 67.2 35.4 19.5 11.4 8.1 6.5

3500 71.6 106 55 30.1 17 11 8.9

4000 107.2 158 82 44.2 25 16 12

4500 152 225 118 62.4 34 21 15

5000 208 310 158 86.4 46 28 20

Once the distance matrix is calculated, in the next phase of

the algorithm phylogenetic tree is produced. And in the final

phase of the algorithm, previously generated phylogenetic

tree is used to determine the order of the alignment.

Experiments were performed with a number of techniques

and concluded that to distribute all the n sequences to each

processor was a better method. In this technique each of the

P processors performs exactly n*(n-1)/2P alignments.

Although this method has very high communication cost,

even then it showed maximum speed up. For n = 500

sequences, where each sequence had 200 characters this

technique showed a speedup of 5.81 times [11]. The result

of implementation on cluster is shown in Figure 3.

Fig. 3 Running Time and Speed ups for Parallel Implementation of Clustlaw

Parallel multiple sequence alignment was also performed on

the cell broadband engine [12] where the parallel portions of

the code were executed on synergistic processing units

whereas sequential code on power processing units. For n=

8 pair of sequences where each sequence had 2048

characters showed a speed up of 46.37 x times.

B. Cell Implementation of Sequence Alignment Algorithms

Cell broadband engine based implementation for global

alignment was performed on IBM Cell SDK 3.0 to obtain

the results the implementation was executed on Sony Play

Station 3 (SP3) and was compiled with optimized level -O3.

The performance of this implementation was studied on

different number of SPUs. The result of the implementation

is shown in Figure 4 by using up to 6 synergistic processing

units (SPUs). When this implementation is compared with a

sequential implementation on a desktop with 3.2 GHz

Pentium 4 Processor, a speed up of 6.5 xs is obtained. When

this implementation was compared with best sequential

algorithm with single SPU and a Pentium 4 Processor the

speed ups were 4.5x and 3.5x respectively [11].

72AJCST Vol.7 No.2 July-September 2018

Dhruv Chander Pant and O. P. Gupta

Fig. 4 Global Alignment for input size of 2048X2048

FASTA is a multiple sequence alignment algorithm. It is

used to compute pair of match and mismatch between the

sequences. Then this computation is used to detect the

similarity between the sequences.

C. Cell Broadband Engine Implementation of FASTA for

Multiple Sequence Alignment

AltiVec application-programming interfaces, already there

in the Fasta package, was converted to the synergistic

processing unit application programming interfaces to run

Fasta on cell broadband engine. The interfaces which are

not converted are implemented with the help of multiple

instructions i.e. Vec max and Vec subs [11]. Vec max

application programming interfaces is used to determine the

maximum of two vectors. Result is stored in the output

vector. From the stored result, synergistic processing unit

find the greater vector. Vec subs application programming

interfaces are used to perform saturated subtraction. In

saturated subtraction any element with negative value is set

to zero. In smith waterman a positive value of each cell is

needed, so this application programming interface is helpful

in the execution of smith water man.

Once the alignment scores are calculated with the help of

power processing units, scores, query and library sequences

are delivered to synergistic processing unit to execute the

smith waterman kernel. But this cell implementation is

limited by the size of the sequence. A sequence of more

than 2048 characters cannot be compared in this

implementation because of the size of the synergistic

processing unit local memory. This problem can be rectified

with the help of pipeline approach. Once smith waterman is

implemented on the cell, then it can be used in FASTA

package. In FASTA each query sequence is compared with

every sequence in the database. Hence balancing load

between each pair of sequences is evaluated.

D. Protein Structure Prediction Algorithms

The most important application of protein structure

prediction is drug design. In protein structure prediction

tertiary structure of the proteins is predicted from its amino

acid sequences. On the bases of physical properties many

protein structures are possible. So it is very difficult to

understand the stability of a structure.

Genetic algorithm is used to implement protein structure

prediction on computational grid [13]. Cell broadband

engine implementation of protein structure prediction is also

done [14]. In this implementation sequences are shifted

from database to synergistic processing units with this

implementation a speed up between 3.2 x and 3.6 x was

achieved.

III. CONCLUSIONS

It is concluded that Parallel Computing is having very good

impact on computational and data intensive applications.

The processing time of bioinformatics algorithms can be

improved by parallelization. When the jobs are parallelized

and executed in a distributed computing environment,

communication sub-systems also play a major role and

contribute in processing time. So, impact of communication

sub-systems also need to be analyzed in parallelized

bioinformatics applications.

IV. ACKNOWLEDGEMENT

The authors express deep gratitude to the Dean, Research,

Innovation and Consultancy Department of I.K.G. Punjab

Technical University, Kapurthala, for giving them the

opportunity to carry on this research work.

73 AJCST Vol.7 No.2 July-September 2018

Performance Analysis of Parallelized Bioinformatics Applications

REFERENCES

[1] D. Jawadat, “Era of Bioinformatics”, in Proceedings of 2nd IEEE
international conference on Information and Communication

Technologies: From Theory to Applications, pp 18060-1865, 2006.

[2] R. Hughey and K. Karplus, “Bioinformatics: A New Field in
Engineering Education” in Proceedings of 31st ASEE/IEEE Frontiers

in Education Conference, pp 15-17, 2001.

[3] O.P. Gupta and S. Rani, “Bioinformatics applications and Tools: An
Overview”, CiiT- International Journal of Biometrics and

bioinformatics, Vol 3, No 3, pp. 107-110, 2010.

[4] I. Gorton, P. Greenfield, A. Sazalay and R. Williams, “Data Intensive
Computations in 21st Century”, in Computer Magazine of IEEE

Computer Society, Vol. 41, No. 4, pp. 30 -32, 2008.

[5] C. Mueller, M. Dalkilic and A. Lumsdaine, “Implementing Data
Parallel algorithms for Bioinformatics”, in proceedings of SIAM

Conference on Computational Science and Engineering, pp 226-232,

2005.
[6] K. Hwang and Z. Xu, “Scalable Parallel Computing: Technology,

Architecture and Computing”, Mc-GrawHill Series in Computer

Engineering, 1998.

[7] T.F. Smith and M.S. Waterman, “Identification of Common

Molecular Subsequences”, Journal of Molecular Biology, Vol. 147,

No. 1, pp. 195-197, 1981.
[8] Y. Chen, S. Yu and M. Leng, “Parallel Sequence Alignment

Algorithms for Clustering System”, International Federation for
Information Processing, Vol. 207, pp. 311-321, 2006.

[9] A. Wirawan, K.C. Keong and B. Schmidt, “Parallel DNA Sequence

Alignment on Cell Broadband Engine”, Springer – Verlag Berlin
Heidelber, pp. 1249– 1256, 2008.

[10] J. Ebedes and A. Datta, “ Multiple Sequence Alignment in Parallel

on a Workstation Cluster”, Oxford University Press, Vol. 20, No. 77,
pp. 1193-1195,2004.

[11] B.K. Pandey, S.K. Pandey and D. Pandey, “A Survey of

Bioinformatics Applications on Parallel Architectures”, International
journal of Computer Applications, Vol. 23, No. 4, pp. 21 – 25, 2011.

[12] V. Sachdeva, M. Kistler, E. Speight and T.H.K. Tzeng, “Exploring

the Viability of Cell Broadband Engine for Bioinformatics
applications”, in Proceedings of IEEE International Parallel and

Distributed Processing Symposium, pp. 1-8, 2007.

[13] G. Minervini, G.L. Rocca, P.L. Luisi and F. Polticelli, “High
Throughput Protein Structure Prediction in a Grid Environment”,

Journal of Bio- Algorithms and Med System, Vol. 3, No. 5, pp. 39-43,

2007.
[14] H. Zhang, B. Schmidt and W.M. Witting, “ Accelerating BLASTP on

the Cell Broadband Engine”, in Proceedings of the 3rd International

Conference on Pattern Recognition in Bioinformatics, pp. 46 – 47,
2008.

[15] S. Rani and O.P. Gupta, “CLUS_GPU-BLASTP- accelerated protein

sequence alignment using GPU- enabled cluster”, Journal of
Supercomputing, Vol. 73, No. 10, pp. 4580-4595, 2017.

[16] M. Al-Rajab and J. Lu, “Bioinformatics: an overview for cancer

research”, Proc. 13th International Conference on Bioinformatics and
computational Biology, the University of Georgia, USA, pp. 123-128,

2012.

74AJCST Vol.7 No.2 July-September 2018

Dhruv Chander Pant and O. P. Gupta

