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Abstract - The network attacks are discovered using the 
Intrusion Detection Systems (IDS). Anomaly, signature and 
compound attack detection schemes are employed to fetch 
malicious data traffic activities. The attack impact analysis 
operations are carried out to discover the malicious objects in 
the network. The system objects are contaminated with 
process injection or hijacking. The attack ramification model 
discovers the contaminated objects. The dependency networks 
are built to model the information flow over the objects in the 
network. The dependency network is a directed graph built to 
indicate the data communication over the objects. The attack 
ramification models are designed with intrusion root 
information. The attack ramifications are applied to identify 
the malicious objects and contaminated objects. The attack 
ramifications are discovered with the information flows from 
the attack sources. The Attack Ramification with Bayesian 
Network (ARBN) scheme discovers the attack impact without 
the knowledge of the intrusion root. The probabilistic 
reasoning approach is employed to analyze the object state for 
ramification process. The objects lifetime is divided into 
temporal slices to verify the object state changes. The system 
call traces and object slices are correlated to construct the 
Temporal Dependency Network (TDN). The Bayesian Network 
(BN) is constructed with the uncertain data communication 
activities extracted from the TDN. The attack impact is fetched 
with loopy belief propagation on the BN model. The network 
security system is built with attack impact analysis and 
recovery operations. Live traffic data analysis process is 
carried out with improved temporal slicing concepts. Attack 
Ramification and Recovery with Dynamic Bayesian Network 
(ARRDBN) is built to support attack impact analysis and 
recovery tasks. The unsupervised attack handling mechanism 
automatically discovers the feasible solution for the associated 
attacks. 
Keywords: Dynamic Bayesian Networks, Intrusion Detection 
Systems 

I. INTRODUCTION

Intrusion detection systems are the ‘burglar alarms’ of the 
computer security field. The aim is to defend a system by 
using a combination of an alarm that sounds whenever the 
site’s security has been compromised and an entity—most 
often a Site Security Officer (SSO)—that can respond to the 
alarm and take appropriate action.  This method should be 
contrasted with those that aim to strengthen the perimeter 
surrounding the computer system. Both of these methods 
should be used, along with others, to increase the chances of 
mounting a successful defense, relying on the age-old 
principle of defense in depth.  

It should be noted that the intrusion can be one of a number 
of different types. For example, a user might steal a 
password and hence the means by which to prove his 
identity to the computer. Such a user is called as a 
masquerader. The detection of such intruders is an 
important problem for the field. Other important classes of 
intruders are people who are legitimate users of the system 
but who abuse their privileges and people who use pre-
packed exploit scripts, often found on the Internet, to attack 
the system through a network. This is by no means an 
exhaustive list and the classification of threats to computer 
installations is an active area of research.  

Two major principles are used in the intrusion detection 
process. They are anomaly detection and signature 
detection. The anomaly detection is relying on flagging all 
behavior abnormal for an entity. The signature based model 
uses the flagging behavior close to some defined pattern 
signature of a known intrusion. The problems with the 
anomaly detection approach are it does not necessarily 
detect undesirable behavior. The false alarm rates can be 
high in the anomaly based model. The problems with the 
signature based approach are absence of security policy.  

An intrusion detection system consists of an audit data 
collection agent that collects information about the system 
being observed. This data is then either stored or processed 
directly by the detector. The output of detector is presented 
to the SSO. SSO can take further action with reference to 
the alarm. 

II. INTRUSION DETECTION PRINCIPLES

A. Anomaly Detection

In anomaly detection, the system watches abnormalities in 
the traffic in question. The system takes the attitude which 
is abnormal and probably suspicious. The construction of 
such a detector starts by forming an opinion on what 
constitutes normal for the observed subject and then 
deciding on what percentage of the activity to flag as 
abnormal and how to make this particular decision. This 
detection principle thus flags behavior that is unlikely to 
originate from the normal process, without regard to actual 
intrusion scenarios. 

Self-learning systems learn by example what constitutes 
normal for the installation; typically by observing traffic for 
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an extended period of time and building some model of the 
underlying process. A collective term for detectors that 
model the normal behavior of the system by the use of a 
stochastic model that does not take time series behavior into 
account. The system itself studies the traffic and formulates 
a number of rules that describe the normal operation of the 
system. In the detection stage, the system applies the rules 
and raises the alarm if the observed traffic forms a poor 
match with the rule base. 
 
A system that collects simple and descriptive statistics from 
certain system parameters into a profile and constructs a 
distances vector for the observed traffic and the profile. If 
the distance is great enough, the system raises the 
alarm.This model is a more complex nature, taking time 
series behavior into account. Examples include techniques 
such as a Hidden Markov Model (HMM), an Artificial 
Neural Network (ANN) and other more or less exotic 
modeling techniques. An artificial neural network (ANN) is 
an example of a ‘black box’ modeling approach. The 
system’s normal traffic is fed to an ANN, which 
subsequently ‘learns’ the pattern of normal traffic. The 
output of the ANN is then applied to new traffic and is used 
to form the intrusion detection decision. In the case of 
surveyed system, this output was not deemed of sufficient 
quality to be used to form the output directly, but rather was 
fed to a second level expert system that took the final 
decision. 
 
The programmed class requires someone, be it a user or 
other functionary, who teaches the system programs it to 
detect certain anomalous events. Thus the user of the system 
forms an opinion on what is considered abnormal enough 
for the system to signal a security violation.These systems 
build a profile of normal statistical behavior by the 
parameters of the system by collecting descriptive statistics 
on a number of parameters. Such parameters can be the 
number of unsuccessful logins, the number of network 
connections, the number of commands with error returns, 
etc. In this class the collected statistics were used by higher 
level components to make a more abstract intrusion 
detection decision. 
 
Here the user provides the system with simple but still 
compound rules to apply to the collected statistics.This is 
arguably the simplest example of the programmed—
descriptive statistics detector. When the system has 
collected the necessary statistics, the user can program 
predefined thresholds that define whether to raise the alarm 
or not. An example is “number of unsuccessful login 
attempts > 3”.The idea is to state explicitly the 
circumstances under which the observed system operates in 
a security-benign manner and to flag all deviations from this 
operation as intrusive. This has clear correspondence with a 
default deny security policy, formulating, as does the 
general legal system, which is permitted and labeling all 
else illegal. A formulation that while being far from 
common, is at least not unheard of. 
 

In state series modeling, the policy for security benign 
operation is encoded as a set of states. The transitions 
between the states are implicit in the model, not explicit as 
when coded under a state machine in an expert system shell. 
As in any state machine, once it has matched one state, the 
intrusion detection system engine waits for the next 
transition to occur. If the monitored action is described as 
allowed, the system continues, while if the transition would 
take the system to another state, any state that is not 
explicitly mentioned will cause the system to sound the 
alarm. The monitored actions that can trigger transitions are 
usually security relevant actions such as file accesses, the 
opening of ‘secure’ communications ports, etc. 
 
The rule matching engine is simpler than and not as 
powerful as a full expert system. There is no unification, for 
example. It does allow fuzzy matching, fuzzy in the sense 
that an attribute such as ‘Write access to any file in the “tmp 
directory” could trigger a transition. Otherwise the actual 
specification of the security benign operation of the 
program could probably not be performed realistically.  
 
B. Signature Detection 
 
In signature detection, the intrusion detection decision is 
formed on the basis of knowledge of a model of the 
intrusive process and what traces it ought to leave in the 
observed system. The system can define in any and all 
instances what constitutes legal or illegal behavior and 
compare the observed behavior accordingly. It should be 
noted that these detectors try to detect evidence of intrusive 
activity irrespective of any idea of what the background 
traffic, i.e. normal behavior, of the system looks like. These 
detectors have to be able to operate no matter what 
constitutes the normal behavior of the system, looking 
instead for patterns or clues that are thought by the 
designers to stand out against the possible background 
traffic. This places very strict demands on the model of the 
nature of the intrusion. No sloppiness can be afforded here 
if the resulting detector is to have an acceptable detection 
and false alarm rate. 
 
The system is programmed with an explicit decision rule, 
where the programmer has himself profiteered away the 
influence of the channel on the observation space. The 
detection rule is simple in the sense that it contains a 
straightforward coding of expected to be observed in the 
event of an intrusion. Thus, the idea is to state explicitly 
traces of the intrusion can be thought to occur uniquely in 
the observation space. This has clear correspondence with a 
default permit security policy, or the formulation that is 
common in law, i.e. listing illegal behavior and thereby 
defining all that is not explicitly listed as being permitted. 
 
State-modeling encodes the intrusion as a number of 
different states, each of which has to be present in the 
observation space for the intrusion to be considered to have 
taken place. They are by their nature, time series models. 
Two subclasses exist: in the first, state transition, the states 
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that make up the intrusion form a simple chain that has to be 
traversed from beginning to end; in the second, petri-net, the 
states form a petri-net. In this case they can have a more 
general tree structure, in which several preparatory states 
can be fulfilled in any order, irrespective of the model 
where they occur. 
 
An expert system is employed to reason about the security 
state of the system, given rules that describe intrusive 
behavior. Often forward-chaining, production-based tools 
are used, since these are most appropriate when dealing 
with systems where new facts are constantly entered into the 
system. These expert systems are often of considerable 
power and flexibility, allowing the user, access to powerful 
mechanisms such as unification. This comes at a cost to 
execution speed when compared with simpler methods.  
 
String matching is a simple, often case sensitive, substring 
matching of the characters in text that is transmitted 
between systems, or that otherwise arise from the use of the 
system. Such a method is of course not in the least flexible, 
but it has the virtue of being simple to understand. Many 
efficient algorithms exist for the search for substrings in a 
longer string.These systems are similar to the more 
powerful expert system, but not as advanced. This often 
leads to speedier execution. 
 
C. Compound Detectors 
 
These detectors form a compound decision in view of a 
model of both the normal behaviour of the system and the 
intrusive behaviour of the intruder. The detector operates by 
detecting the intrusion against the background of the normal 
traffic in the system. The detectors are called as ‘signature 
inspired’ because the intrusive model is much stronger and 
more explicit than the normal model. These detectors would 
at the very least be able to qualify their decisions better, i.e. 
gives an improved indication of the quality of the alarm. 
Thus these systems are in some senses the most ‘advanced’ 
detectors surveyed. These systems automatically learn what 
constitutes intrusive and normal behavior for a system by 
being presented with examples of normal behavior 
interspersed with intrusive behavior.  
 
The examples of intrusive behavior must thus be flagged as 
such by some outside authority for the system to be able to 
distinguish the two.There is only one example of such a 
system in this classification and it operates by automatically 
determining what observable features are interesting when 
forming the intrusion detection decision, isolating them and 
using them to form the intrusion detection decision later. 
 

III. ATTACK AND ITS IMPACT DISCOVERY 
SCHEME 

 
A. Graphical Model based Impact Analysis 
 
In the last several decades, networked systems have grown 
in complexity and sophistication, introducing complex 

interdependencies amongst their umerous and diverse 
components. Attackers can leverage such interdependencies 
to penetrate seemingly well-guarded networks through 
sophisticated multi-step attacks. Explicit and implicit 
interdependencies exist at various layers of the hardware 
and software architecture. In particular, dependencies 
between vulnerabilities and dependencies between 
applications and services are critical for assessing the 
impact of multi-step attacks. These two classes of 
interdependencies have been traditionally studied using 
attack and dependency graphs respectively. Although 
significant work has been done in the area of both attack 
and dependency graphs, neither of these models can provide 
an accurate assessment of an attack’s impact, when used in 
isolation. To address this limitation, the system takes a 
mission-centric approach and present a solution to integrate 
these two powerful models into a unified framework that 
enables us to accurately assess the impact of multi-step 
attacks and identify high-impact attack paths within a 
network. This analysis can ultimately generate effective 
hardening recommendations, and can be seen as one phase 
of a continuous process that iteratively cycles through 
impact analysis and vulnerability remediation stages. 
 
B. Probabilistic Mission Impact Assessment 
 
Assessing and understanding the impact of scattered and 
widespread events onto a mission is a pertinacious problem. 
Current approaches attempting to solve mission impact 
assessment employ score-based algorithms leading to 
spurious results. A fourfold problem is identified with 
score-based algorithms: (1) score-based algorithms enforce 
deep training of experts to employed frameworks for 
specification (non-context-free), (2) require reference results 
for interpreting obtained results (non-bias-free), (3) require 
assessments outside of an experts’ expertise (non-local), and 
(4) require validation of end-results against ground truth. 
The model provides a formal, mathematical model for bias- 
and context-free mission impact assessment. Based on a 
probabilistic model the system reduces mission impact 
assessment to a well-understood mathematical problem 
based on definitions from local expertise and allow for a 
validation at data level. This is useful for areas and 
applications where qualitative assessments are required, 
such as assessments in critical infrastructures or military 
contexts. 
 
C. Big Data Security Dependency Analyses 
 
Intrusive multi-step attacks, such as Advanced Persistent 
Threat (APT) attacks, have plagued enterprises with 
significant financial losses and are the top reason for 
enterprises to increase their security budgets. Since these 
attacks are sophisticated and stealthy, they can remain 
undetected for years if individual steps are buried in 
background \noise." Enterprises is seeking solutions to 
connect the suspicious dots" across multiple activities. This 
requires ubiquitous system auditing for long periods of time, 
which in turn causes overwhelmingly large amount of 
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system audit events. Given a limited system budget, how to 
efficiently handle ever-increasing system audit logs is a 
great challenge. 
 
The approach exploits the dependency among system events 
to reduce the number of log entries while still supporting 
high-quality forensic analysis. The aggregation algorithm 
preserves that preserves the dependency of events during 
data reduction to ensure the high quality of forensic 
analysis. Then the system uses an aggressive reduction 
algorithm and exploits domain knowledge for further data 
reduction. To validate the efficacy of the proposed 
approach, a comprehensive evaluation is contacted on real-
world auditing systems using log traces of more than one 
month. The approach can significantly reduce the size of 
system logs and improve the efficiency of forensic analysis 
without losing accuracy. 
 
D. Fault Detection in Large-Scale Cyber-Physical Systems 
 
Detecting and isolating faults in Cyber-Physical Systems 
(CPSs), e.g., critical infrastructures, smart buildings/cities 
and the Internet-of-Things, are tasks that do generally scale 
badly with the CPS size. This work introduces a model-free 
Fault Detection and Diagnosis System (FDDS) designed 
having in mind scalability issues, so as to be able to detect 
and isolate faults in CPSs characterised by a large number 
of sensors. Following the model-free approach, the 
proposed FDDS learns the nominal fault-free conditions of 
the large-scale CPS autonomously by exploiting the 
temporal and spatial relationships existing among sensor 
data. A clustering method proposed to partition the large-
scale CPS into groups of highly correlated sensors in order 
to grant scalability of the proposed FDDS. The design of 
model- and fault-free mechanisms to detect and isolate 
multiple sensor faults, and disambiguate between sensor 
faults and time variance of the physical phenomenon the 
cyber layer of CPS inspects. 
 
IV. ATTACK RAMIFICATIONS USING TEMPORAL 

DEPENDENCY NETWORK 
 
Assessing and mitigating the effects of successful attacks 
against computing systems are the natural and essential next 
step once attacks are detected. The central task of 
assessment and mitigation is to identify the ramifications of 
an attack, which include both malicious objects residing in a 
compromised system and objects that are contaminated by 
an attack.  
 
However, successfully carrying out this task is faced with 
significant challenges. Specifically, attacks are usually very 
sophisticated, leveraging various vulnerabilities to 
compromise target systems and employing advanced attack 
vectors such as process injection/hijacking to subsequently 
contaminate system objects. Attacks’ high complexity is 
further compounded by their increasing stealthiest, which 
commonly offers attackers a considerable amount of time 
before they are detected. 

A generic strategy to solve these challenges is to monitor 
the information flow among objects in a computing system. 
For example, when a process reads from a file, a potential 
information flow is generated from the file to the process. 
Specifically, if the file contains malicious content such as 
exploits, a vulnerable process might be compromised. The 
dependency network serves as an effective method to model 
the information flow. A dependency network is a directed 
graph, where an edge e (vi, vj) indicates a potential 
information flow from the object vi to another object vj . 
The provenance propagation methods employ dependency 
networks to identify all objects that have malicious 
information flows from the intrusion root, i.e., the entry 
point of an attack. 
 
While these methods partially satisfy the objective to reveal 
malicious and contaminated objects in a system, their 
practical effectiveness is fundamentally constrained. The 
vast majority of these methods assume that the intrusion 
root is a known priori or can be easily located. 
Unfortunately, revealing intrusion root itself is a 
challenging task in practice considering the high complexity 
of object interactions in a system, the stealthiest of the 
attacks, and particularly the uncertainty caused by 
incomplete knowledge of all malicious actions. Therefore, 
such assumption is easily invalidated in practice, rendering 
these methods ineffective. These methods are also 
vulnerable todependency explosion, when a large number of 
intertwined but irrelevant object interactions are recorded 
and used to build dependency networks. For example, 
methods assume all objects that interact with a suspicious 
object are infected and use them to construct dependency 
networks. All processes that have read malicious files could 
be falsely considered as infected while only a few of them 
are actually contaminated by malicious content. Such 
approaches not only result in unnecessarily large graphs but 
also incur excessive false positives, 
 
A few attempts have been proposed to mitigate dependency 
explosion by leveraging fine-grained logging or tracking. 
While they certainly lead to dependency networks that 
characterize the propagation of malicious information with 
higher fidelity, the performance cost could be prohibitively 
expensive. For example, BEEP divides a process to 
autonomous units and subsequently establish dependencies 
at unit-level. BEEP requires binary instrumentation of 
applications and mandates a priori analysis of applications. 
Therefore, it faces the difficulty in scaling to a large number 
of applications that typically run in modern systems. A 
more ambitious method has been proposed to perform byte-
level dynamic taint tracking analysis, which incurs 
substantial run-time overhead. 
 
In this paper, we present a novel, light-weight method to 
identify attack ramifications the method tackles the problem 
of undetermined intrusion root by leveraging dependency 
relationships of information flows between undetermined 
objects and a subset of objects with known security states. It 
overcomes dependency explosion by fusing evidence from 
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both known infected objects and known legitimate objects. 
Specifically, it leverages observations that i) an object could 
be infected if it has malicious information interactions with 
other known infected objects and ii) information 
interactions that involve known legitimate objects might be 
attack-irrelevant, thus providing clues for the real malicious 
information flows. It is worth noting that our method does 
not rely on fine-grained logging or tracking techniques. 
Instead, it uses only coarse-grained events, minimizes 
human efforts and incurs low run-time overhead. In order to 
increase the accuracy of description, our method splits the 
lifetime of an object into consecutive time slices to profile 
how the security state of this object changes over time, and 
considers explicit flows between different objects and 
implicit flows between different slices of an object. 
 
Our method consists of three phases. First, it constructs a 
temporal dependency network (TDN) to correlate object-
slices based on the inter object and intra-object information 
flows between them. Next, it builds a Bayesian network 
(BN) based infection model to characterize the infection 
propagation in TDN as a random process. Bayesian 
Network is used to take advantage of its capabilities of 
probabilistic inference over structured dependencies in 
TDN. Finally, it performs loopy belief propagation on the 
BN-based model to infer the security state of an object. To 
summarize, our work makes the following contributions: 
 
1. We propose a new dependency network model, namely 

temporal dependency network (TDN), to include timing 
as an important dimension in the characterization of 
information flows. Our evaluation results based on 
extensive experiments have demonstrated that TDN, 
combined with our inference algorithm, boosts 
detection performance by 10.24% compared with 
existing coarse-grained dependency networks, which do 
not include timing information. 

2. We devise a BN-based model to profile uncertainty 
introduced by the incomplete observation of attacks and 
real dependencies among objects.  

3. We introduce a probabilistic inference method using 
loopy belief propagation to estimate the security states 
of undetermined objects. Our inference method does 
not only employ known compromised objects, but also, 
for the first time, incorporate evidence offered by 
objects with confirmed legitimate security states.  

4. We have performed extensive evaluation using a large 
dataset of 389 attacks launched by real-world malware 
samples including highly sophisticated ones such as 
Stuxnet. These attacks cover a large variety of attack 
vectors, vulnerabilities, malware families, and 
background workloads. Evaluation results have shown 
that our proposed method is effective in attack 
ramification analysis with a 97.47% precision at 
97.21% recall on averagewithout the knowledge of 
intrusion root, and with a98.24% precision at 97.87% 
recall with the knowledgeof intrusion root. In addition, 
our method incurs less than5% run-time overhead. 
 

This work is an extension of our conference paper. We has 
made substantial improvements in following perspectives. 
 
First, we compress the temporal dependency networkby 
merging redundant nodes and edges without affectingits 
effectiveness. This significantly reduces the size of 
thedependency network, making both storage and analysis 
muchmore efficient. Second, we construct a refined TDN of 
finergrained objects such as memory blocks, threads. The 
refinedTDN, or temporal dependency network with 
memory-relateddependencies (TDN-M), enables the 
analysis of sophisticatedsituations of novel attacks, such as 
localized infections.  
 
Meanwhile, we propose a new method to capture 
executable-memory relateddependencies by combining 
system-level events and callstack traces. Third, we have 
redesigned probabilistic modelbetween each node and its 
parents as a two-step infectionpropagation process. The 
attack-specific information is explicitly modeled as random 
variables and shared amongmultiple dependencies. This 
facilitates the analysis of multistepattacks that the acquired 
evidence of some attack stepscan also contribute to the 
analysis of otherattack steps via these random variables.  
 
Fourth, we have enhanced our Bayesian network model to 
infer over uncertainevidence introduced by inaccurate 
observations such as falsepositives or negatives of security 
checks. We have investigatedthe uncertainty of evidence 
and analyzed their impact onattack ramification 
identification. Finally, we conduct moreexperiments to 
evaluate the effectiveness of our method ona large dataset of 
389 attacks launched by real-world malwaresamples 
including highly sophisticated ones such as Stuxnet. 
 

V. CONCLUSION 
 

The survey is conducted on the areas of the attack discovery 
and impact analysis domains. The Graphical Model based 
Impact Analysis, Probabilistic Mission Impact Assessment, 
Big Data Security Dependency Analyses and Fault 
Detection in Large-Scale Cyber-Physical System 
mechanisms are analyzed with different merits and 
demerits.The lightweight temporal dependency network 
method is able to identify attack ramifications without 
knowledge of intrusion root and less subject to dependency 
explosion. The lifetime of an object is split into consecutive 
time slices (object-slices) to profile how the security state of 
this object changes over time, a temporal dependency 
network (TDN) from system call traces to correlate object-
slices according to information flows between them. A 
Bayesian network (BN) model is built to characterize the 
uncertainties of infection propagations in the TDN. Loopy 
belief propagation performed based on the BN model to 
infer the security state of an object by fusing evidence 
derived from infected and legitimate objects whose security 
states are known.  
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