
Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.8 No.S2, 2019, pp.28-30

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2019.8.S2.2030

Performance Comparison between VM Based Webserver and
Docker Container Webserver

A. Anand1 and A. Nisha Jebaseeli2

1Digital Transformation Group, Bharat Heavy Electricals Ltd, Tiruchirappalli Division, Tamil Nadu, India
2Assistant Professor & Head, Department of Computer Science,

Bharathidasan University Constituent College, Lalgudi, Tamil Nadu, India
E-Mail: anand_visuvasam@yahoo.com, nishamarcia@gmail.com

Abstract - Cloud computing is a type of Internet-based
computing that provides shared computer processing
resources, services and data to computers on demand. It offers
an innovative business model for organizations to adopt IT
services at a reduced cost with increased reliability and
scalability. Virtualisation is one of backbone technology of
cloud computing. But today, container based technology
especially Docker offering better performance than Virtual
Machine. It is famous for its light weight operation and better
scaling. But still it is lagging in Disk I/O and network
bandwidth intensive applications. So it is important to analyse
and compare various performance parameters of VMs and
Docker Images before implementation. Main Parameters will
be CPU, Memory, Disk Utilization and Network Bandwidth. In
this research paper, we compare performance metrics between
Webserver deployed in Virtual machine and Docker
webserver.
Keywords: Docker Container, Virtual Machines, Performance
Metrics, Web server, Cloud Computing

I. INTRODUCTION

Cloud computing is an on-demand resource model to
deliver high performance and reliability. Three main forms
of Cloud computing are private cloud, public cloud, and
hybrid clouds. Public cloud is one based on the standard
cloud computing model, in which a service provider makes
resources, such as virtual machines (VMs), applications or
storage, available to the general public over the internet.
Public cloud services may be free or offered on a pay-per-
usage model. Private cloud is a particular model of cloud
computing that involves a distinct and secure cloud based
environment in which only the specified client can operate.
Hybrid cloud includes multiple private cloud or public
cloud platforms provided by multiple cloud providers.
Hybrid cloud can dynamically increase the response and
processing capacity of the Web applications by dynamically
extending the Web applications to the nearly unlimited
public cloud resources.

Virtualisation technology is key concept in cloud
computing. Virtualization provides a layer of abstraction
between the hardware and the software. Hardware or
platform virtualization refers to the creation of a virtual
machine (VM) that acts like a real computer with an
operating system. The main difference from the tradition
computer is that it allows definition of multiple VMs with

different operating systems over the same hardware. The
host machine is the actual machine on which the
virtualization takes place and the guest machine is the
virtual machine created by hypervisor [4] (Virtual Machine
Manager). In virtual machines, isolation is achieved at
machine level and each virtual machine runs its own
operating system. Interaction between hardware and
operating system will be done through hypervisors. It is
computer software, firmware or hardware that creates and
runs virtual machines.

Fig. 1 Virtual Machines

Each virtual machine appears to have the host’s processor,
memory and other resources all for itself. However, it is
actually controlling the host processor and other resources,
allocating what is needed to each operating system and
making sure that the guest machines (virtual machines)
can’t disrupt each other.

Different hypervisors available in market are VMWare
ESX, XEN, KVM and Hyper-V etc.,

II. CONTAINER TECHNOLOGY

As technology evolves, container-based technology [2] has
gained significant traction in the last years due to its near
native performance for application execution while
featuring application isolation. Unlike virtual machines,
containers execute directly on the host OS, sharing the
kernel with other containers. A container is a uniform
structure in which any application can be stored, transported
and run. It is named for and often compared to the
standardised intermodal containers used in the shipping
industry for efficient transportation. A container

28AJCST Vol.8 No.S2 March 2019

(Received 7 January 2019; Revised 23 January 2019; Accepted 13 February 2019; Available online 20 February 2019)

encapsulates an application with its own operating
environment. It can be placed on any host machine without
special configuration, removing the issue of dependencies.
It requires minimum amount of resources to perform the
task.

Fig. 2 Container Virtualisation

Different container technologies available in market are
OpenVZ, LXC, Rkt and Docker etc.

III. DOCKER

Docker [7][9] is a tool which renders the lightweight
virtualization at system level through extending a common
container format approach on Linux called Linux
Containers (LXC). It employs c groups [5] (Linux control
groups), for resource allocation and isolation. LXC limits an
application to a specific set of resources and it enables
Docker to share the host OS resources. It automates a
portable, lightweight, self-sufficient container deployment
of any application that will scuttle virtually anywhere. Such
Docker containers can enclose any payload, and will run
coherently on and between virtually any servers.

The Docker platform is divided into the Docker Engine,
which supports the runtime and execution of containers, and
the Docker Registry, which provides the hosting and
delivery of a repository of Docker images. Each container
provides a namespace, isolated environment for execution.
Docker exploits filesystem layering, as well as specific
features of the Linux kernel to make all of these possible.

Fig.3 Docker Platform

Namespaces are the mechanism by which each Docker
container is isolated from the host and other containers.
There are many different namespaces that LXC supports,
but perhaps the two most significant ones are the pid [5] and
net namespaces [5]. The pid namespace is responsible for
giving each container its own isolated environment for
processes. A given container can only see and send signals
to the processes that are running within the same container.
In addition, the net namespace allows different containers to
have what appears to be distinct network interfaces, thereby
permitting two containers to simultaneously bind to the
same port. AUFS, (Another Union Filesystem) [8] is a file
system used by Docker that amalgamates a collection of
different file systems and directories into a single logical
file system.

IV. INSIDE DOCKER

Four main internal components of docker [10] are Client
and Server, Docker Images, Docker Registries, and Docker
Containers. The docker server gets the request from the
docker client and then processes it accordingly. The
complete RESTful (Representational state transfer) API and
a command line client binary are shipped by docker. Docker
daemon/server and Docker client can be run on the same
machine or a local docker client can be connected with a
remote server or daemon, which is running on another
machine. The foundation of every image is a base image.
Operating system images are basically the base images. The
images of operating system create a container with an
ability of complete running OS. Docker images are placed
in docker registries. There are two types of registries,
public and private. Docker Hub is called a public registry
where everyone can pull available images and push their
own images without creating an image from the scratch.
Docker image creates a docker container. Containers hold
the whole kit required for an application, so the application
can be run in an isolated way.

V. EXPERIMENTAL SETUP

In this research, Suse Openstack private cloud setup was
used for deploying VM and Docker. RHEL 7 was installed
and used as Base OS for both Virtual Machine and Docker
image. JSP based Model Supplier registration application
was developed and deployed in Webserver. Apache Tomcat
was used as web application server. It was installed and
configured in both VM and Docker. JMeter was used to
generate web loads. In order to test the different scenarios of
deploying web services, JMeter was used as a generation
and testing tool. JMeter comes with a graphical server
performance dashboard. JMeter simulates a group of users
sending requests to a target server then statistics will be
provided indicating the performance of that specific target
server.

VI. PERFORMANCE METRICS

In order to effectively analyse the performance between
Webserver deployed in VMWare VM and Docker

29 AJCST Vol.8 No.S2 March 2019

Performance Comparison between VM Based Webserver and Docker Container Webserver

webserver [6], following metrics [1] [3] are considered in
this test:
1. Server Throughput (requests/sec): It is important to

measure server performance with respect of throughput
at different request rates. It is a rate at which we are
able to retrieve the web documents with the GET
method of HTTP requests sent.

2. Response Time (millisecond): It is essential to measure
the time elapsed from sending the request until a
response is received. The response time is measured in
milliseconds. Both response time and throughput are
measured using the measurement tool JMeter.

3. CPU Utilization (percent): Average CPU Utilization is
Amount of CPU utilisation due to handling incoming
number of requests.

VII. RESULTS AND DISCUSSION

The test was done for 20 seconds duration. The number of
threads used in this test is varying from 1 to 20. JMeter is
used to generate request and receive response from
webserver. Performance metrics were captured and plotted
in curve. Average number of successful requests per second
handled by server is plotted in fig 4(a). It is observed that
the throughput increases with increase of number of threads.
The throughput saturates approximately 10,000 requests per
second in Docker Webserver. Whereas for VM based
webserver maximum throughput is obtained approximately
9, 400 requests per second. The CPU utilisation (Fig 4 (b))
in Docker webserver is reaching 96% when handling
request of 20 threads. But in VM based Webserver CPU
Utilisation is reaching nearly 100% when handling request
of 16 threads. Fig 4(c) shows Docker webserver has lower
response time when comparing with VM based webserver
means that Docker webserver is faster in handling incoming
requests.

(a)

(b)

(c)

Fig. 4 Performance metrics

VIII. CONCLUSION

In this paper, it was demonstrated that Docker web server
outperform VM based webserver in all performance
metrics. The performance of docker is faster than virtual
machines as it has no guest operating system and less
resource overhead.

REFERENCES

[1] Tasneem Salah, M. Jamal Zemerly, and Chan Yeob Yeun
“Performance comparison between container-based and VM-based
services”, IEEE International conference on Innovations in Clouds,
Internet and Networks, Paris, pp. 185-190, March 2017

[2] Germán Moltó, Miguel Caballer, and Alfonso Pérez “Coherent
Application Delivery on Hybrid Distributed Computing
Infrastructures of Virtual Machines and Docker Containers”, IEEE
International conference on Parallel, Distributed and Network-based
Processing (PDP), St. Petersburg, Russia, pp. 486-490, March 2017.

[3] Janki Bhimani, Zhengyu Yang, and Miriam Leeser “Accelerating big
data applications using lightweight virtualization framework on
enterprise cloud”, IEEE International conference on High
Performance Extreme Computing Conference (HPEC), IEEE,
Waltham, MA, USA, pp. 1-8, 2017.

[4] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio “An
updated performance comparison of virtual machines and Linux
containers”, IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pp. 171-172, 2015.

[5] Joris Claassen, Ralph Koning, and Paola Grosso “Linux containers
networking: Performance and scalability of kernel modules” NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium, pp. 713-717.

[6] Yunchun Li, and Yumeng Xia “Auto-scaling web applications in
hybrid cloud based on docker” 5th International Conference on
Computer Science and Network Technology (ICCSNT), pp. 75-79,
2016.

[7] Nitin Naik “Building a virtual system of systems using docker swarm
in multiple clouds” IEEE International Symposium on Systems
Engineering (ISSE), pp.1-3, 2016.

[8] Theo Combe, Antony Martin, and Roberto Di Pietro “To Docker or
Not to Docker: A Security Perspective” IEEE Cloud Computing
Year: 2016, Vol. 3, No. 5, pp. 54-62, October 2016.

[9] Bin Xie, Guanyi Sun, and Guo Ma “Docker based overlay network
performance evaluation in large scale streaming system” IEEE
Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), pp. 366-369, 2016.

[10] Babak Bashari Rad, Harrison John Bhatti, and Mohammad Ahmadi
“An Introduction to Docker and Analysis of its Performance” IJCSNS
International Journal of Computer Science and Network Security,
Vol. 17, No. 3, pp. 228-235, March 2017.

30AJCST Vol.8 No.S2 March 2019

A. Anand and A. Nisha Jebaseeli

