
 Asian Journal of Computer Science and Technology

ISSN: 2249-0701 (P) Vol.8 No.S3, 2019, pp.16-18
© The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ajcst-2019.8.S3.2112

The Methodology of N-Version Programming
Phalguna Rao Kuna

Research Scholar, Department of Computer Science,

 Sri Satya Sai University of Technology and Medical Sciences, Bhopal, Madhya Pradesh, India
E-Mail: kprao21@gmail.com

Abstract - Software Fault Tolerance is evolved as a technique
to increase the dependability of computing systems. Because of
limitations with producing of error free software, Majority of
software errors are design faults. The root cause for software
design errors is the complexity of the problem domain.
Software Fault Tolerance (SFT) has become an important
concern A number of Fault Tolerance techniques designed at
minimizing the effect of software faults are being investigated.
An N-version software (NVS) unit is a fault tolerant software
unit that depends on a generic decision algorithm to determine
a consensus result from the results delivered by two or more
member versions of the NVS unit. Results of five consecutive
experimental investigations are summarized, and a design
paradigm for NVS is presented. In this paper, a critical review
of NVP is presented. The advantages, current challenges, and
further research areas of NVP are discussed.
Keywords: Design Diversity, Software Complexity, Software
Fault Tolerance, N-Version Programming

I. INTRODUCTION

Services in today’s computation based society must be

highly dependable. Unplanned service downtime causes

revenue loss and, in some cases, contractual penalties.

Hence design of fault tolerant systems has gained

significant attention. Ensuring shared resources are

available despite the failure of certain hardware or a

software component is a tremendous challenge for IT

specialists. The concept of Fault Tolerance techniques

through redundant hardware components was conceived in

the early 1950s [5] [6]. Software Fault Tolerance is the

ability of software to detect and recover from a fault that is

happening or has already happened in either the software or

hardware in the system. As a result of research efforts to

apply Fault Tolerance to software design faults, a number of

techniques have evolved. The following sections give a

brief introduction to various techniques and a critical review

of N-Version Programming approach.

II. SOFTWARE FAULT TOLERANCE TECHNIQUES

Software Fault Tolerance can be broadly classified into two

groups. Single version software and Multiversion software

techniques. Single version techniques focus on improving

the Fault Tolerance of a single piece of software by adding

mechanism into the design, targeting the detection,

containment, and handling of errors caused by the design

faults. Some of the key attributes of single version

techniques are modularity, system closure, atomicity of

actions and exception handling.

Multi version Fault Tolerance is based on the use of two or

more versions of a piece of software executed either in

sequence or in parallel. The modularity, system closure,

atomicity of actions and exception handling attributes are

desirable and advantageous in each version of the

multiversion techniques too. Some of the classical

techniques of multiversion Software Fault Tolerance are

Recovery blocks (RB) and N-Version programming. Both

of these techniques are based on design diversity.

A. Recovery Block Technique

This technique was evolved as a result of first long term

systematic investigation of multiversion technique initiated

by Brian Randell in early 1970s [4]. In this technique,

alternate software versions are organized in a manner

similar to the dynamic redundancy (standby) technique in

hardware. Its objective is to perform runtime Software Fault

Tolerance detection by an acceptance test performed on the

results delivered by the first version. Its objective is to

perform runtime Software Fault Tolerance detection by an

acceptance test performed on the results delivered by the

first version. If the acceptance test is not passed, state is

restored to what existed prior to the execution of that

algorithm and execution of an alternate version on the same

hardware is followed. Recovery is considered complete

when acceptance test is passed. Checkpoint memory is

needed to recover the state after a version fails, to provide a

valid starting operational point for the next version (Fig.1).

 Fig. 1 Recovery Block Model

16AJCST Vol.8 No.S3 June 2019

(Received 23 March 2019; Revised 1 April 2019; Accepted 15 April 2019; Available online 22 April 2019)

B. N-Version Programming

The NVP investigation project was started by A. Avizienis

in 1975[2]. In this method, N-fold computation is carried

out by using N independently designed software modules or

“versions” and their results are sent to a decision algorithm

that determines a single decision result [10]. In the NVP

approach, a decision algorithm that delivers an

agreement/disagreement decision is implemented. The N-

Version programming is defined as the independent

generation of N>=2 software modules, called “versions”,

from the same initial requirements [10]. “Independent

generation” refers to the programming effort by individual

or groups that do not interact with each other with respect to

programming process. As the goal of NVP is to minimize

the probability of similar errors at decision points, different

algorithms, programming languages, environments and

tools are used wherever possible.

Fig. 2 N-Version Model

In NVP, since all the versions are built to satisfy the same

requirements, Comparison of outputs and declaration of

single result is carried out by output selection algorithm or

voting algorithm (Fig.2). The output selection algorithms

should be capable of detecting erroneous version outputs and

prevent the propagation of bad values to main output. The

output selection algorithm should be developed considering

the application attributes like safety and reliability..

For applications where safety is a main concern, algorithm

should be capable of detecting erroneous outputs and

prevent the propagation of bad values to the main output.

Also, the algorithm should be capable of declaring an error

condition or initiate an acceptable safe output sequence,

when it can not achieve a high confidence of selecting a

correct output. For increased reliability, algorithm should be

developed such that output is correct with a very high

probability.

Some of the generalized selection algorithms are

Formalized majority voter, generalized median voter,

formalized plurality voter and weighted averaging

techniques [11]. Other voting techniques that are being

investigated are based on neural network and Genetic

algorithm techniques [12]. They are implemented such that

their performance is related to the application and the

particular characteristic of the software versions.

As an example to demonstrate the NVP, consider a simple

program that counts the number of digits in an input text.

The program reads strings, calls the procedure count digit

for each input string, adds up all the counts and prints the

result. The module specifications [15] are as shown.

module main{

uses:count_digit(string) returning integer

Implementation: main.o

}

module string_function_package{

NVP module

Interface:count_digit(string) returning integer

Implementation: “C_string_function.o@system1”

Implementation: “P_string_function.o@system2”

Implementation: “F_string_function.o@system3”

Voter: “vote.o”

Error_handler: “handler.o”

}

application example {

import main

import string_function_package

bind main.count_digit string_function_package.count_digit

}

The specification defines a main module which calls the

procedure count_digit. The main module does not have

interface definition as this module is not used by any other

module. The module string_function_package has an

interface definition of count_digit used by module main.

Specification for the module string_function_package also

defines a voter and different versions of count_digit written

in C, Pascal and Fortran. Object code for different versions

of count_digit are C_string_function.o, P_string_function.o

and F_string_function.o for C, Pascal and Fortran

respectively. The module also specifies the target machine

on which the version has to execute. Different language

versions of function count_digit are as shown

int digit(s)

{

--C function--

}

function digit(s:str):integer;

begin

--Pascal function--

End

INTEGER digit(string)

--Fortran function--

END FUNCTION digit

III. ADVANTAGES OF NVP

As NVP is based on design diversity technique, the built

program will fail independently and with low probability of

coincidental failures. This ensures that one of the other

versions will continue to provide the required functionality.

Especially in VLSI circuits which is growing complex due to

advancements in chip technologies, probability of design

17 AJCST Vol.8 No.S3 June 2019

The Methodology of N-Version Programming

fault is more since a complete verification of the design is

very difficult to achieve. Use of N-versions of VLSI circuits

allow the continued use of chips with design faults as long as

their errors at decision points are not similar. Software

verification and validation time is reduced by executing two

independent versions in an operating environment thereby

completing verification and validation with production

operation concurrently.

Given a formal and an effective specification, different

versions of software can be written by programmers working

at their time and location using their own personal

computing equipment. This “mail-order” approach [3] will

drastically bring down the cost of programming that accrues

in highly controlled professional programming

environments.

IV. CHALLENGES OF NVP

The important condition for success of NVP is accurate

specification of requirements. A series of experiments have

been conducted and significant progress has occurred in the

development of specification languages. Current goal of

research is to compare and assess the ease of use of these

methods by application programmers.

NVP is based on the conjecture that software designed

differently will cause very few similar errors at decision

points. Though some researchers have developed guidelines

and methodologies to achieve design diversity,

implementation has remained as a complex issue and

evaluation is based on qualitative arguments. Large-scale

experiments need to be carried out to statistically evaluate

the usefulness of these methods. Cost of using NVP is

another important issue. Generation of N versions of a given

program instead of a single one increases the cost of

software owing to escalated cost of development and

supporting environment to complete the implementation.

Peter Bishop [13] has argued that development and

production cost can be reduced by applying design diversity

only to critical paths. Effectiveness of this method however

still needs to be quantitatively verified.

V. CONCLUSION

With amazing advancements with hardware technology, the

focus of Fault Tolerance is shifting from hardware to

software. Research on Software Fault Tolerance is gaining

momentum. Hardware reliability theory can not be directly

applied to Software, owing to the complexity of Software.

N-Version programming approach of Software Fault

Tolerance is based on design diversity conjecture.

Independence of design and implementation effort with

diverse programming languages, algorithms and environ-

ment will result in very low probability of similar errors at

decision points, thereby increasing the Fault Tolerance

capability of software.

REFERENCES

[1] Ken S. Lew, Tharam Dillon, and Kevin Forward “Software
Complexity and Its Impact on software Reliability”, IEEE –Software

Eng., Vol. 14, No. 11, pp. 1645-1655, Nov. 1988.

[2] “Fault Tolerance and fault intolerance. Complimentary approaches to
reliable computing”, A. Avizienis, Proc. 1975 Int. Conf. Reliable

Software, LosAngels, CA, pp. 458-464, Apr. 21- 27, 1975.

[3] A. Avizienis, “N-Version Approach to fault tolerant Software”, IEEE
Software e.g., Vol. SE.11, No.12, pp. 1491 -1501, Dec. 1985

[4] B. Randell, “System structure for Software Fault Tolerance”, IEEE

Software Eng., Vol. SE.1, pp. 220-232, June 1975.
[5] “Information processing systems-Reliability and requirements”, Proc.

East. Joint Comput. Conf., Washington, DC, pp. 8-10, December 1953.

[6] J. Oblonsky, “A self correcting computer”, Digital Information
processors, W. Hoffman, Ed. New York: Inter science, pp. 533-542,

1962.

[7] J.F. Barlett, “A Non Stop operating system”, Proc. Hawaii Int. Conf.
Syst. Sci, Honolulu, HI, pp 103-119. Reprinted in Theory and Practice

of reliable System Design. Bedford, MA: Digital press, pp. 453-460,

January 5-6, 1978.
[8] Timothy C.K. Chou, “Beyond Fault Tolerance”, IEEE Computer, pp.

47-49, April 1997.

[9] S. N. Wood field, “An experiment on unit increase in program
complexity”, IEEE-Software Eng., Vol-SE. 5, No. 2, pp. 76-79, 1979.

[10] A. Avizienis and L. Chen, “On the implementation of NVP for Fault

Tolerance”, Proc. COMPSAC 77, 1st IEEE-CS Int. Compute.
Software. Appl. Conf., Chicago, IL, pp. 149-155, Nov. 8-11, 1977

[11] “A Theoretical Investigation of Generalized Voters for Redundant

Systems”, Lorczak, Digest of Papers FTCS-19:The Nineteenth
International Symposium on Fault-Tolerant Computing, pp. 444-451,

1989.

[12] “Dependable, Intelligent Voting for Real-Time Control Software”,
Engineering Applications of Artificial Intelligence, Vol. 8, No. 6, pp.

615-623, Dec. 1995.

[13] Peter Bishop, “Software Fault Tolerance by Design Diversity”,
Software Fault Tolerance, John Wiley & Sons, 1995.

[14] “Software Fault Tolerance: A Tutorial”, Wilfredo Torres-Pomales,
NASA Technical Memorandum, Oct. 2000.

[15] James M. Purtilo and Pankaj Jalote, “An Environment for Developing

Fault-Tolerant Software”, IEEE-Software Eng., Vol. 17, No. 2, Feb
1991.

18AJCST Vol.8 No.S3 June 2019

Phalguna Rao Kuna

