
 Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.8 No.S3, 2019, pp.1-6

© The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ajcst-2019.8.S3.2115

Robust and Secure Framework for Mobile Cloud Computing

Pallavi Alava
1
 and G. Radhika

2

1
Student,

2
Assistant Professor,

1&2
Department of Computer Science and Engineering, School of Engineering and Technology,

 Sri Padmavati Mahila Visva Vidyalayam, Tirupati, Andhra Pradesh, India
E-Mail: alava.pallavi@gmail.com, radi323@gmail.com

Abstract - Smartphone devices are widely utilized in our daily

lives. However, these devices exhibit limitations, like short

battery lifetime, limited computation power, small memory

size and unpredictable network connectivity. Therefore,

various solutions have been projected to mitigate these

limitations and extend the battery period of time with the

employment of the offloading technique. In this paper, a

unique framework is projected to offload intensive

computation tasks from the mobile device to the cloud. This

framework uses Associate in Nursing improvement model to

work out the offloading decision dynamically supported four

main parameters, namely, energy consumption, CPU

utilization, execution time, and memory usage. Additionally, a

new security layer is provided to shield the transferred data

within the cloud from any attack. The experimental results

showed that the framework will choose an acceptable

offloading decision for various forms of mobile application

tasks whereas achieving important performance improvement.

Moreover, different from previous techniques, the framework

will defend application knowledge from any threat.
Keywords: Mobile Cloud Computing, Smartphone Devices,

Security, Computation Offloading

I. INTRODUCTION

Smartphones give a broad vary of applications, such as face

detection, increased reality, image and video processing,

and video gaming and speech recognition. These

applications are complicated, and therefore the demand for

computing resources is increasing. However, despite the

advancements in smartphones, the extent of battery life has

remained joined of the most challenges in rising process

requirements through battery upgrade[1]. Cloud computing

permits access to unlimited resource over the net[2]. Cloud

computing provides many advantages, like self-service

provisioning, elasticity, broad network access, resource

pooling, low costs, and ease of utilization, among others.

Thus, mobile cloud computing is introduced to overcome

the limitations of smartphone devices. Mobile cloud

computing may be a new paradigm that integrates cloud

computing technology and mobile devices to increase the

battery lifetime and increase application performance.

Recent studies have projected to offload all or a part of the

mobile applications from mobile device to the cloud for

remote execution [3]. These frameworks are designed to

make a trade-off between one or more constraints, such as

energy consumption of the mobile device, CPU utilization,

execution time, remaining battery life, and data transmission

amount on the network, within the offloading decision [4].

However, most of those models do not consider memory

usage as a constraint within the offloading decision.

Memory usage is one in all the most resources consumed by

mobile applications. Additionally, security techniques don't

seem to be applied in the protection of offloaded

information from attacks. Therefore, this work in the main

focuses on building a brand new model that mixes most of

the mentioned constraints to improve the performance of

mobile applications and to protect the applying information

from any attack. We specifically projected a unique

framework that uses computation offloading to offload only

the intensive tasks of mobile applications. We developed an

improvement model responsible for determinant the

offloading decision. The main results and contributions of

this paper are as follows

1. This work proposes a unique framework that offloads

only intensive tasks rather than offloading all

applications, thereby requiring less network

communication.

2. AN improvement model is developed to see the

offloading call dynamically at runtime supported four

main constraints, namely, execution time of the task,

C.P.U. utilization, memory usage and energy

consumption.

3. A new security layer is other to code the infoof the task

before transferring to the cloud aspect by using AES

encryption technique.

4. Three differing kinds of mobile applications are used in

the experimental studies to check this framework and to

show the selection of a correct offloading decision for

improved application performance. The rest of the

paper is organized as follows. Section a pair of

discusses the state-of-the-art procedure offloading

frameworks and their drawbacks...

II. RELATED WORK

Numerous approaches are recently proposed to handle the

challenges of mobile devices by offloading the computation

tasks to the cloud resources for remote execution. A number

of these approaches migrate only a method from the mobile

device to the cloned virtual machine(VM) on the cloud. A

combination of static analysis and dynamic identification

modules is used to partition the application and confirm that

method is migrated to the cloud. An entire smartphone

system on the cloud and used a profiler module to observe

1 AJCST Vol.8 No.S3 June 2019

(Received 15 March 2019; Revised 25 March 2019; Accepted 10 April 2019; Available online 16 April 2019)

the remote execution of the strategies using an execution

controller. The most downside of and is that the energy-

consuming demand of basic synchronization with the clone

VM on the cloud [5] what is more, application knowledge

are not protected against attacks throughout transfer to the

cloud. The [6] synchronization drawback is handled by

offloading only the intensive services and not the complete

method to the cloud. Additionally, the authors build a model

to work out the offloading decision for these services.

However, this model is very simple and static and forever

prefers remote execution. In certain cases, a death penalty

services on the mobile is superior to offloading to the cloud.

The transferred data should be protected by applying any

security technique. Other frameworks involving the

partition of the applying and the offload of intensive ways

area unit projected [7].

Theseframeworks additionally use a whole number linear

programming model like our framework in creating

offloading choices. Total latency, remaining battery life,

and energy consumption constraints area unit thought

aboutin creating the offloading decision while not adding

any memory usage thought and security to the offloading

model. In contrast, in the total android application is

offloaded from the mobile device to the cloud, which is

resource intense as a result of the massive quantity of

transferred knowledge over the network. Additionally, the

application sent to the cloud should be safe, thus any

security technique should be protected.

The minimization of the data transmission and therefore the

energy consumption are the most goals of, that offloads

only the resource-intensive services and exploits from

Software-as-a-Service model for the configuration of

intensive services on the cloud server. The same as desires

basic synchronization between the mobile device and

therefore the cloud server node that consumes extra battery

power and makes the offloaded knowledge liable to attacks.

However, this framework used a discovery service to get the

hardware info of the cloud resources each minute, thereby

intense extra energy. Additionally, the transferred

knowledge weren't protected from attacks. This formula

comprised three main parts, namely, computation offloading

choice, CPU clock frequency control in local computing, [8]

and transmission power allocation in cloud computing.

III. FRAMEWORK ARCHITECTURE AND DESIGN

In this section, we justify the design of the framework and

show however its modules will communicate to attain the

look goals of the system. Additionally, the linear

optimization model is outlined. A close determination of the

offloading decision is additionally showed. Then, we offer

associate algorithmic program that clarifies however this

framework works. Finally, we establish the specified steps

to feature this framework throughout development.

A. Framework Architecture: The framework design consists

of six modules, namely, estimator, profile, network and

bandwidth monitor, decision maker, mobile manager, and

cloud manager.

First, the framework works at the method level, wherever

the developers have to be compelled to add AN annotation

(@Remote) specifically intensive strategy at the developing

step. These strategies should need further computation and

might be offloaded to the cloud for remote execution. These

strategies should not a) depend upon the user interface or b)

use any I/O mobile device like GPS, camera, or measuring

device.

1. Estimator

The estimator module is responsible for identifying these

strategies for native execution on the mobile device and

remote execution on the cloud with totally different input

sizes (stored as a sample) at the installation step. Then, the

module obtains the values of execution time, memory

usage, CPU utilization, and energy consumption for every

annotated technique for these totally different input sizes

(minimal eye application is employed to live the energy

consumption and electronic equipment utilization). Finally,

the values are communicated and sent to the profile module.

2. Profile

The profile module obtains the values of execution time,

memory usage, CPU utilization, and energy consumption

from figurer module for every annotated technique. Then,

the module creates a brand new file for every technique and

stores these values into the file. These files are updated

when every running method and utilized by the decision

maker module as a history-based go into the offloading

decision.

3. Network and Bandwidth Monitor

This module only monitors this standing of the network and

gathers cell connection state and its information measure,

Wi-Fi association state and its information measure, and

signal strength of cell and Wi-Fi connection (get this data

using programming code). Then, this data is shipped to {the

call|the choice} maker module to support the determination

the offloading decision.

4. Decision Maker

The choice build, that is, the core module of the planned

framework, contains associate whole number linear

programming model and decision-making rule that predicts

at runtime wherever the annotated strategies are executed.

The goal of the model is to search out associate application

partitioning strategy that minimizes the energy

consumption, transfer knowledge, memory usage, and

electronic equipment utilization, in smartphones, subject to

bound constraints. Let us assume that we've n variety of

annotated methods that will be offloaded to the cloud for

remote execution, that is, M1,M2,…..,Mn. every technique I

2AJCST Vol.8 No.S3 June 2019

Pallavi Alava and G. Radhika

consists of a collection of parameters, namely, input size

(input I), memory usage (memo I), electronic equipment

utilization (CPU I), and battery consumption (power I), for

native execution. Different parameters, like memory used

for security (memo_sec I), battery consumption used for

security (power_sec I), and electronic equipment used for

security (CPU_sec I) also are thought of if the method is

offloaded for remote execution. During this model, xi is

introduced for every technique I, that indicates whether or

not the method is executed regionally on the mobile device

(xi=0) or offloaded for remote execution (xi=1).

The objective function is represented as follows:

min𝑥∈0,1(𝑐𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟∗𝑤𝑡𝑟+𝑐𝑚𝑒𝑚𝑜𝑟𝑦∗𝑤𝑚𝑒𝑚+𝑐𝐶𝑃𝑈∗𝑤𝐶
𝑃𝑈+𝑐𝑝𝑜𝑤𝑒𝑟∗𝑤𝑝𝑜𝑤𝑒𝑟)

Where:𝐶𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟=Σ𝑖𝑛𝑝𝑢𝑡𝑖∗𝑥𝑖𝑛𝑖=1

𝐶𝑚𝑒𝑚𝑜𝑟𝑦=Σ𝑚𝑒𝑚𝑜𝑖∗(1−𝑥𝑖)+𝑛𝑖=1Σ𝑚𝑒𝑚𝑜_𝑠𝑒𝑐𝑖∗𝑥𝑖𝑛𝑖=1

(1)

𝐶𝐶𝑃𝑈=Σ𝐶𝑃𝑈𝑖∗(1−𝑥𝑖)+𝑛𝑖=1Σ𝐶𝑃𝑈_𝑆𝑒𝑐𝑖∗𝑥𝑖𝑛𝑖=1

𝐶𝑝𝑜𝑤𝑒𝑟=Σ𝑝𝑜𝑤𝑒𝑟𝑖∗(1−𝑥𝑖)+𝑛𝑖=1Σ𝑝𝑜𝑤𝑒𝑟_𝑠𝑒𝑐𝑖∗𝑥𝑖

C transfer, Cmemory, CCPU, and Cpower represent price

for transferring the input size, memory used, CPU used, and

power consumed for technique I severally. Wtr, wmemo,

wCPU, and wpower are the weights for every these costs,

that result in completely different objectives.

According to the target perform in the 3 constraints that

have to be handled with care are as follows: Minimize the

memory utilized by the appliance ways on the mobile

device. Memory price is split into 2 elements. The primary

half is that the memory used once the strategy of the

appliance is executed locally on the mobile device, whereas

the second half is employed to write in code the information

before transferring to the cloud within the offloading case.

This memory cost should not exceed the on the market

memory on the mobile device. The strategy is restricted to a

threshold worth that is set supported the fraction between

range of running applications and therefore the total size of

memory. This constraint may be written as follows:

Where Mth is that the memory threshold.

a) Minimize the Overall Execution Time: That is, the second

constraint, for the applying. The overall time for corporal

punishment the applying strategies remotely on the cloud

should be but the overall time for corporal punishment the

strategies of the application regionally on the mobile device.

Let SM and SC be the processor speeds (instruction per

second) of the mobile and also the cloud, severally, and C

be the amount of instructions concerned within the

methodology invocation. Csec represents the amount of

instruction to cipher the information before transfer to the

cloud. If the number of information needed for the tactic

execution is D and also the network information measure is

B, then the time needed to transfer this knowledge is D/B.

Therefore, the overall time for corporal punishment

strategies on the cloud is split into the subsequent 3 parts:

the time consumed by encrypting the information,

knowledge transmission, and also the time execution on the

cloud. This constraint may be drawn as follows:

𝐸𝑥𝑒_𝑡𝑖𝑚𝑒_𝑙𝑜𝑐𝑎𝑙>𝐸𝑥𝑒_𝑡𝑖𝑚𝑒_𝑐𝑙𝑜𝑢𝑑

Where Exe_time_local is total time for the native execution

of the method, as calculated as follows:

Exe_time_cloud is total time for offloading the tactic for

remote execution, as calculated as follows:

Where to overhead is the overhead time of our framework.

b) Minimize The Whole Energy Consumption: The last

constraint for the objective perform. This constraint deals

with the energy consumed by execution the appliance

methodology. This constraint is often diagrammatic as

follows:

If the mobile consumes PM Watts (W) for methodology

computation regionally, Pd W for being idle, Psec W for

encrypting the data of the method, and Pr W for transferring

to the cloud, then the whole energy consumed regionally on

the mobile de- vice are often calculated as follows:

The total energy consumed for remote execution on the

cloud is often calculated as follows:

Finally, when we tend to solve this formulation, every

methodology xi are often determined whether or not for

native execution (xi=0) or offloading to the cloud (xi=1).

Within the experiments, particle swarm optimization (PSO)

java code is employed to implement the linear model.

Particle swarm optimization could be a heuristic world

optimization methodology associate degreed an

3 AJCST Vol.8 No.S3 June 2019

Robust and Secure Framework for Mobile Cloud Computing

optimization algorithm supported swarm intelligence. PSO

is comparable to the Genetic rule (GA) and Emmet Colony

optimization (ACO) within the sense wherever they're

population-based search ways. however GA and ACO are

thought of as ex- pensive machine value compared with

PSO and that we need to minimize the general consumption,

therefore, PSO is employed as best optimization rule with

significantly higher machine potency to resolve our

optimization drawback.

5. Mobile Manager

The mobile manager module is responsible for causing a

computer file containing the method code and its needed

libraries at the installation step. The mobile manager

handles the execution of the method supported the model

decision. If the tactic is dead regionally on the mobile

device, the files areupdated with new values through the

profile module. However, if the choice is to offload the

method, then the mobile manager encrypts the offloaded

data by victimization AES technique and communicates

with the cloud manager module to transfer this knowledge

with the method name. Finally, the mobile manager receives

and delivers the results to the appliance

6. Cloud Manager

The cloud manager module is that the solely module

deployed on the cloud side. This module is written strictly

in Java. Therefore, any application will take pleasure in the

projected framework to offload its computation to any

resource that runs the Java Virtual Machine (JVM).

Communication between the cloud manager and also the

mobile manager modules is managed by wading bird

communication middleware within the 1st communication,

at the installation step, a computer file containing the tactic

code and its required libraries are sent to the cloud. Then,

the cloud manager receives the ways data and decrypts them

within the following run. Then, the manager executes the

tactic remotely and sends the result back to the mobile

manager module with the new values to be updated by the

profile module.

B. Framework Execution Flow

This section discusses the flow of execution of the proposed

framework. Formula one illustrates the elaborated processes

of the framework and the way the offloading decision for

the annotated technique is created.The time complexness for

this formula is portrayed by O(n) and doesn't consume

further resources from the mobile device[9]. Firstly, at the

developing step, the mobile application is partitioned the

ways into 2 sorts. The primary kind is that the computing-

intensive ways that are annotated by developer and needs a

lot of computation resources. Whereas the second is that the

ways that rely on the device hardware and should be dead

regionally as mentioned higher than. Then, at the execution

step, the choice maker module reads the annotated

technique name (first form of methods) and checks the

network status using network and information measure

monitor module whereas the applying is running. once no

association or failing association happens, then all of the

ways are dead regionally on the mobile device; otherwise,

the choice maker module reads the transfer knowledge size,

memory usage, electronic equipment utilization, and energy

consumption through the profile module, wherever these

values are keep at the installation step and updated

throughout every run. Then, the improvement model is

resolved. The improvement model determines that

technique is executed regionally on the mobile device and

that technique is offloaded for remote execution.

Algorithm 1: Framework execution flow

Input: Input size, memory usage, CPU utilization and

energy consumption for each annotated method.

Output: Execution place and result for each method.

1. Read annotated methods name.

2. Check the current network status using Network &

Bandwidth monitor Module.

3. if there isn’t connection then

4. Execute the method locally on the mobile device.

5. else

6. for each method i do

7. Read C transfer, C memory, and CCPU and C power

through the profile module.

8. Solve the optimization model in and determine the

offloading decision.

9. if the decision is offloading then

10. Encrypt the method data using AES Algorithm.

11. Send it to the cloud for remote execution.

12. Return Result back to the mobile device

(communication managed using Mobile Manager &

Cloud Manger Modules).

13. else

14. Execute the method locally on the mobile device.

15. end if

16. end for

17. end if

18. Update the profile file with new values.

C. Integrating the Framework in Mobile Application

In this section, we clarify the specified steps to integrate the

projected framework within the mobile application. Our

frame- work works on the method level and uses a Java

refection and annotation to spot the ways which might be

offloaded[10].

First, at the developing step, the developer has to add

associate annotation (@Remote) on top of every intensive

technique that may be offloaded for remote execution.

Thereafter, every android application goes through 3 main

builders to get the APK installation file as shown in Fig a

pair of the primary builder is that the android PreCompiler,

that generates the Java supply files from your android

resources and Java supply files for any service interface.

Second, the Java Builder compiles the generated files from

the primary builder. Last, the package builder obtains all

4AJCST Vol.8 No.S3 June 2019

Pallavi Alava and G. Radhika

compiled files associated packages them in an APK file.

Our framework adds a replacement extra builder, known as

the category and Jar Generator. This builder creates a

category that contains all annotated ways code that will be

dead remotely and therefore the connected libraries needed

to execute these ways on the cloud. Then, the builder

generates a binary file from created category and libraries

that is distributed to the cloud at the installation step. The

result from this builder is combined with the result from the

Java Builder associated embodied in an APK file through

the Package Builder.

IV. EVALUATION AND ANALYSIS

The proposed framework is evaluated using 3 different

kinds of mobile applications, as shown in Table one. The

experimental results live four parameters for running the

appliance methods regionally on a mobile device and once

offloading the strategies to the cloud by exploitation the

framework. These parameters include interval, computer

hardware utilization, battery consumption, and memory

usage. The analysis shows however these applications will

take pleasure in the planned framework for performance

improvement.

A. Experimental Setup

The experimental setup for testing the planned framework

consists of a Samsung Galaxy S and mobile de- vice, a

server node, and a Wi-Fi wireless network of radio type

802.11g. The Samsung Galaxy S and GT-I9001 runs on

android platform four.4.2 with Qualcomm MSM8255T

computer hardware, 512 MB memory, and electric battery

capability of 1650 mAh at3.7 volts integrated with a Wi-Fi

interface. The server node runs Microsoft Windows seven

final 64-bit operational system with Intel®Core(TM) i5-

2500 computer hardware with two.4Gc frequency, four GB

RAM capability, 600 GB magnetic disk, and a hundred

Mbps network interface[11]. The mobile device accesses

the wireless network via Wi-Fi wireless network affiliation

of radio kind 802.11g, with the obtainable physical layer

rate of fifty four Mbps. within the analysis, very little eye

V2.41 computer code is employed to live interval, computer

hardware utilization, battery consumption, and memory

usage.

B. Experimental and Analysis Results

The application ways might have information as input for

execution. Information square measure transferred over the

network and hold on the cloud side if this methodology is

offloaded for execution.Therefore, this information is

susceptible to attacks. Crypto algorithms are required to

make sure the safety of information and communications

Crypto algorithms are classified as Circulate key algorithms

and uneven key algorithms. Circulate key algorithms

additionally referred to as single key, use a personal (shared

secret) key to execute secret writing and coding method,

whereas uneven key algorithms additionally referred to as

public key, use a public (shared) key to execute secret

writing anduses alternative personal key coding processes.

The foremost well-known symmetric algorithms are DES,

TDES, AES, RC6, Twofish, Blowfish, Serpent, and MARS,

whereas RSA, DSA, PGP, SSH, and SSL square measure

the well-known uneven algorithms[12].The AES algorithm

is chosen and used as encryption technique to shield the

transferred information of the applications.

In the analysis, the planned applied mathematics model of

the framework is applied to the 3 applications that choose

the right decision for all applications. Within the

experimental work, 3 completely different scenarios are

used to prove this result. Within the 1st state of affairs, the

applying ways square measure dead regionally on the

mobile device. Within the second scenario, the applying

ways square measure offloaded for execution on the cloud

by using the planned framework model while not applying

any security technique. Within the last state of affairs, the

applying ways are offloaded for execution on the cloud by

using AES formula to shield the transferred information

over the network and to indicate the consequences of adding

this layer on the framework.

In the planned framework, the linear model is employed to

work out the offloading decision and selects an accurate

decision for the 3 applications once finding for the

parameters of the ways. However, the framework is

changed to permit the quick sort application to run remotely

on the cloud to prove our result.

In the experimental work for the face detection application,

six pictures with 360, 480, 1260, 1315 KB and nine and 11

MB sizes are used. 5 pictures with 100×100, 200×200,

300×300, 512×512, and 1024×512 resolutions are used for

the Gaussian blur application. 5 arrays of 100, 500, 5000,

50000, and 100000 parts are utilized in the quick-sort

application. Every application is executed twenty times for

every inplace, and therefore the average values square

measure obtained.

Face detection and Gaussian blur applications square

measure dead in 3 totally different scenarios. The short kind

application is executed using only 2 eventualities as a result

of additional time is required for offloading to the cloud.

Therefore, the addition of a security layer isn't required once

an area execution decision is advantageous. The amount of

parts within the array is depicted by the coordinate axis, and

interval in milliseconds is depicted within the coordinate

axis. The common interval for executing the face detection

technique or mathematician blur technique within the

absence of the planned framework is 5–8.5 s. the common

interval once the applications are executed using the

planned framework is one.5–2.5 s with none security and

regarding two.8–3.5 s once victimization AES as security

formula for encrypting the transferred knowledge to the

cloud. If we execute the applying regionally while not

mistreatment our framework, the smartphone applications

utilizes associate degree 30 minutes of the process unit

5 AJCST Vol.8 No.S3 June 2019

Robust and Secure Framework for Mobile Cloud Computing

|CPU|C.P.U.| central processor| processor |mainframe

|electronic equipment |hardware |computer hardware on the

average (except for the quick-sort application as a result of

it's an easy task that takes a lot of processing for offloading

than executing locally). The variation in CPU utilization

will increase forthe applying that needs giant computation

and small data for transfer.

The typical memory usage for executing face detection and

mathematician blur applications are 50 and 26 MB

severally. However, the ratios decrease to 35 and 20 MB

while not security and thirty eight and 24 MB once using

AES as a security layer to safeguard the transferred

information. Therefore, the projected framework will

improve quite half-hour of the memory usage ratio for face

detection application and 100 percent for executing

Gaussian Blur on the cloud.

V. CONCLUSION

In this paper, a unique secured, optimized framework is

planned to enhance the potency of offloading computation

from the mobile device to the cloud. This framework will

offload only the appliance strategies that consume

substantial mobile resources. The offloading decision is

formed using a developed 0–1 number applied mathematics

model. This call is formed dynamically at runtime supported

four constraints, namely, memory usage, C.P.U. utilization,

energy consumption, and execution time. The framework

also adds a replacement security layer that uses associate

AES technique to shield the strategies knowledge before

transferring to the cloud within the offloading case.

REFERENCES

[1] N. Vallina-Rodriguez and J. Crowcroft, “Energy management

techniques in modern mobile handsets,” IEEE Communications

Surveys & Tutorials, Vol.15, No.1, pp. 179–198, 2013.

[2] G. Motta, N. S. Fondrini, and D. Sacco, “Cloud computing: An
architectural and technological overview”,International Joint

Conference on Service Sciences,Vol. 3, pp. 23–27, 2012.

[3] A.U.R. Khan, M.Othman, S.A. Madani, and S.U. Khan, “A survey of
mobile cloud computing application models”, IEEE Communications

Surveys & Tutorials, Vol.16, No.1, pp. 393–413, 2014.

[4] M. Shiraz, A. Gani, R.H. Khokhar, and R. Buyya, “A review on
distributed application processing frameworks in smart mobile

devices for mobile cloud computing,” IEEE Communications Surveys

& Tutorials, Vol.15, No.3,pp. 1294–1313, 2013.
[5] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: A

computation offloading framework for Smartphone's”, International

Conference on Mobile Computing, Applications,Vol.76, pp. 59–79,
2010.

[6] F. Xia, F. Ding, J. Li, X.Kong, L.T. Yang, and J.Ma, “Phone2cloud:

Exploiting computation offloading for energy saving on Smartphone's

in mobile cloud computing,” Information Systems Frontiers, Vol.16,

No.1, pp. 95–111, 2014.

[7] W. Zhang, Y. Wen, K. Guan, K. Dan, H. Luo, and D.O. Wu,
“Energy-optimal mobile cloud computing under stochastic wireless

channel,” IEEE Transactions on Wireless Communications, Vol.12,
No.9, pp. 4569–4581, 2013.

[8] M. Shiraz and A.Gani, “A lightweight active service migration

framework for computational offloading in mobile cloud computing,”
Journal of Supercomputing, Vol.68, No.2, pp. 978–995, 2014.

[9] Shiraz, A. Gani, A. Shamim, S.Khan, and R.W. Ahmad, “Energy

efficient computational offloading framework for mobile cloud
computing,” Journal of Grid Computing, Vol.13, No.1, pp. 1–18,

2015.

[10] W.Z. Zhang, H.C. Xie, and C.H. Hsu, “Automatic memory control of
multiple virtual machines on a consolidated server,” IEEE

Transactions on Cloud Computing, vol.5, no.1, pp. 2–14, 2017.

[11] Y. Li, M. Chen, W. Dai, and M. Qiu, “Energy optimization with
dynamic task scheduling mobile cloud computing,” IEEE Systems

Journal, No.99, pp. 1–10, 2017.

[12] J. Toldinas, R. Damasevicius, A. Venckauskas, T. Blazauskas, and J.
Ceponis, “Energy consumption of cryptographic algorithms in mobile

devices”, ElektronikaIrElektrotechnika, Vol. 20, No.5, pp. 158–161,

2014.

6AJCST Vol.8 No.S3 June 2019

Pallavi Alava and G. Radhika

