
Asian Journal of Computer Science and Technology

ISSN: 2249-0701 (P) Vol.8 No.1, 2019, pp.53-61

© The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ajcst-2019.8.1.2118

Comparative Analysis of Hash Authentication Algorithms and

ECC Based Security Algorithms in Cloud Data

S. Hendry Leo Kanickam
1
 and L. Jayasimman

2

1
Research Scholar, Department of Computer Science,

2
Assistant Professor, Department of Computer Applications

1&2
Bishop Heber College, Trichy, Tamil Nadu, India

E-Mail: dr.l.jayasimman@gmail.com

Abstract - Cloud computing is ensuring the security of stored

data in cloud computing servers is one of the mainly

demanding issues. In Cloud numerous security issues arises

such as authentication, integrity and confidentiality. Different

encryption techniques attempt to overcome these data security

issues to an enormous extent. Hashing algorithm plays an

important role in data integrity, message authentication, and

digital signature in modern information security. For security

purpose using encryption algorithm like ECC (Elliptic Curve

Cryptography) and Authentication of data integrity using

hashing algorithms like MD5, and SHA-512. This combination

method provides data security, authentication and verification

for secure cloud computing.

Keywords: Cloud Computing, Hash Algorithm, Elliptic Curve

Cryptography, MD5, SHA, ECDH, ECDSA

I. INTRODUCTION

Cloud computing covers several technologies which

includes databases, networks, virtualization, operating

systems, load balancing, transaction management, resource

scheduling, and concurrency control. It provides potential

helps such as cost reductions and developed business

outcomes for the business concerns. On the other hand,

cloud data security problems for many of these technologies

and systems are applicable to cloud computing these risks

are required to be carefully considered. In case, these risks

will differ based on the sensitivity of the data to be

processed or stored, and how the selected Cloud Service

Provider has implemented for their specific cloud

services[1]. Data is secured only if it fulfills the integrity,

confidentiality and availability of data. Therefore,

protecting the authenticity, integrity and confidentiality of

the data in cloud storage and communications is extremely

important. This level of security is obtained by using

cryptographic algorithms were developed [2].

Cryptographic algorithms are separated into two forms such

as Encryptions (Symmetric and Asymmetric) algorithms

and Hashing. The main variation between hashing and

encryption of data is that Hashing does not decrypt data like

Symmetri3c and Asymmetric encryption performances

[3].A wide range of encryption algorithms such as DES,

AES, Blowfish and TDES available to make data secure by

converting it to unreadable format.

In case, internet attacks are also increased with the hasty

improvement of network technology, the existing

encryption techniques is not sufficient for information

security over internet, therefore the combination of

encryption and encoding is broadly being used to attain

integrity and confidentiality. There is need of a system that

fulfills encrypted data transfer, verification and

authentication, therefore maintaining data confidentiality, to

obtain rid of the same and to induce trust in the computing.

The most important use of hybrid cryptographic algorithm

merges with digital signature and encryption algorithm to

secure data stored in cloud. Subsequently, the encryption

algorithm is used for data confidentiality and digital

signature is used for authentication purpose. In this paper,

the performance of ECDH, ECDSA and ECC, encryption

techniques and SHA-512 encoding techniques are

considered to be effectively performed.

II. HASHING ALGORITHM

A cryptographic hash function is efficiently compresses

message of any length to certain fixed length (message-

digest). This process is irreversible. Hash algorithm

comprises Secure Hash Algorithm (SHA), Message Digest

Algorithm (MD), RIPE-MD, HAVAL and N-Hash and so

on [4].It has three additional security properties such as first

and second pre image-resistant and collision-resistant. A

function is considered as first pre image-resistant, if having

the output value of the function; it is infeasible to discover

any input that map to that output. This property is also

known as one-way communication as one can easily

compute the function in one way but does not return to other

direction. In second pre image-resistant, even if given the

input value and the corresponding output it is

computationally infeasible to discover another distinct input

to facilitate hashes to the same output. As a final point, a

function is known as collision-resistant, if it is infeasible to

discover a pair of different inputs that map to the identical

value.

A function satisfying all the properties mentioned above is a

powerful and versatile tool and can be used to achieve a

variety of security goals. Hash function is used in several

fields like digital signature, information authentication,

message integrality test, and message originality and one of

the very common applications of cryptographic hash

functions is mainly used for password protection in access

control systems. Hash algorithms are differentiated using

53 AJCST Vol. 8 No. 1 January-March 2019

(Received 16 January 2019; Accepted 11 February 2019; Available online 17 February 2019)

the size of the hash value that they generate as follows. In

MD Algorithm Family were using 128 bits, and Secure

Hash Algorithms using 160 bits. Ron Rivest was developed

the Message Digest techniques for performing digital

signature applications. MD2 is cryptographic hashing

algorithm used in 8 bits systems. MD4 and MD5 is also

cryptographic hashing algorithm used in 32bit systems.

MD5 is slower than MD4 but it has more secured compare

than MD 4. National Institute for Standards and Technology

(NIST) was developed the Secure Hash Algorithm

(SHA/SHA-1/SHA-2). SHA-2 is more secured than SHA-1.

A. Message Digest 5 (Md5)

In cryptographic hashing algorithm, MD-5 is used to

generate a 128 bits fixed length hash value [5]. MD5 is

slower than MD4 but it has more secured compare than MD

4 and using the performance of 32-bit processors. An

emphasis on 32-bit processors is completed because, the

four word buffers (P, Q, R, S) that are used to compute the

message digest are, each, a 32-bit register.

The given below steps explain the overview of MD5

operations [6].

1. Steps Overview

a. Pad message so its length plus 448 is divisible by 512.

b. Appending message is end from a 64-bit value.

c. Starting the Four word using 128-bit and buffer

(P,Q,R,S).

d. Execution of text in 16-word using 512-bit blocks:

Every chunk & buffer will process 4 rounds and 16 bit

operations, in which results to pass input and create a

new final buffer value.

Each round is computed by [5].

1. Each round has 16 steps:

2. R(a,b,c,d,Mi,s,ti): a = b + ((a+F(b,c,d)+Mi+ti)<<s)

3. where F(b,c,d) is a different nonlinear function in each

round

4. ti is a value derived from sine

2. Description of MD5

MD5 is the most significant process as same MD4 that

includes the same steps of appending and padding bits.With

the support of MD5 buffers consequently processed and

grouped in 4 rounds of 16 operations are followed and the

message in 16-word blocks consists of 64 operations by the

final output. MD5 uses three operations such as Bitwise

Boolean operation, Cycle shift operation and Modular

Addition operation.MD5 performs in two steps like

Compression and Padding that must be performed

effectively.

a. Padding

1. In padding operation, input message is broken up into

512 bit blocks with the intention that input length is

dividable by 512. Initially, a single bit appends at the

end of the message. Afterward a series of 0‟s are

appended with the intention that the length of the

padded message is congruent 448 mod 512.

2. The length of the message represents in 64 bit binary

string even if the message is too long, greater than 264

then lower 64 bits are used for binary representation.

b. Divide the Message

MD5 processes the input string in 512-bit blocks,

partitioned into16 operations 32-bit sub-blocks to form

single 128-bit hash value in the output of the algorithm.

c. Initialization of the State Variable

MD5 utilizes 4 state variables that is a 32 bit integer. These

four variables are sliced and diced such as P,Q,R,S

initializations as follows:

P=0x67452301

Q=0XEFCDAB89

R=0x98BADCFE

S=0x10325476

d. Table

MD5 further utilizes a table K that has 64 elements.

Element number i specifies as Ki. The table computes

beforehand to get faster the computations. The

mathematical sin function computes by the elements:

Ki = | sin(i + 1)| * 2
32

e. Compression

Four functions are used in this algorithm as follows.

F(X, Y, Z) =(X&Y) | ((~X) &Z)

G(X, Y, Z) =(X&Z) | (Y& (~Z))

H(X, Y, Z) =X^Y^Z

I(X, Y, Z) =Y ^ (X|~ (Z))

At this point &, |,^,~ are bitwise AND, OR, XOR and NOT

operator in which each 512 bits is performed. After this step

the result which is in the message digest form is stored in

the state variable A, B, C, D.

f. Processing the Blocks

The whole contents of the four buffers are mixed with the

words of the input (A, B, C and D), using the four functions

(F, G, H and I). There are four rounds, each involves 16

basic operations. The four copied into the different variable:

a gets A, b obtains B, c acquires C, and d obtains D. The

main loop has four rounds and each series utilizes a

different operation 16 times. Each operation performs a

nonlinear function on three of a, b, c, and d. After that, it

adds that result to the right a variable number of bits and

adds the result to one of a, b, c, and d.

As a final point, the result replaces one of a, b, c, and d. One

operation is demonstrated in the figure below.

54AJCST Vol. 8 No. 1 January-March 2019

S. Hendry Leo Kanickam and L. Jayasimman

Fig. 1MD5 Processing

In this figure, it illustrates how the auxiliary function F is

operated through the four buffers (A, B, C and D), using

constant Ki and message word Mi. The item "<<<s" denotes

a binary left shift by s bits.

g. Hashed output

Next step, all rounds have been performed, the buffers A, B,

C and D contain the MD5 digest of the original input. The

final output is recognized as a hash value, a fingerprint or a

message digest.

B. Secure Hash Algorithm -2 (SHA-2)

SHA is a cryptographic hashing algorithm and the new

versions SHA-2 bear the same underlying resemblance of

structure, modular arithmetic, and logical binary operations

as that of SHA-1 without sharing its weaknesses [7].Each

data block has 512 bits with the purpose of indicated as a

sequence of 32-bit words with the support of SHA- 256 and

SHA-224 bits. Each data block contains 1024 bits as a

sequence of 64-bit words with the support of SHA-512 and

SHA-384.Each 32-bit words and 64-bit words operated by

using SHA-256 and SHA-512.Both SHA-512 and SHA-256

are fresh hash functions that utilize different additive

constants and shift amounts and their structures are virtually

identical, differing only in number of rounds.

The final version of SHA-512 had been performed from

SHA-224/SHA-256. Here is a step summary of SHA-512

processing [8,9].

1. Steps Overview

a. SHA-512 is a variant of SHA-256 which operates on

eight 64-bit words. Start hashed function for message.

Padded length - multiple of 1024bits long

b. 1024-bit message blocks M
(1)

, M
(2)

, ….., M
(N)

 is parsed

c. and processed one time.

d. Initial hash value H
(0)

, to H
(i)

 = H
(i-1)

 + CM
(i)

(H
(i-1)

),

e. Where C - Compression function and. H
(N)

- hash of M.

f. 64 bit word Output are generate from SHA-512‟s 6

logical function and each function worked as x,y,z with

64 bit words.

2. Narrative of SHA-512

SHA-512 is the overall processing of show by given below

figure 2. The different processing steps of SHA-512

presents in detail as given below.

a. Append Padding Bits and Length Value

In this step makes the input message an exact multiple of

1024 bits:

1. The length of the total message to be hashed should be

a multiple of 1024 bits.

2. The last 128 bits of what obtains hashed are reserved

for the message length value.

3. Original message as an exact multiple of 1024 and need

to append another 1024-bit block at the end. In which

process to create block for the 128-bit message.

4. The padding initiate 1 bit after needed 0 bits with 128

bit messages {M1,M2, . . . ,MN},

5. The length value in the trailing 128 bit positions is an

unsigned integer with its most significant byte first.

b. Initialize Hash Buffer with Initialization Vector

1. The hash buffer execute by eight 64-bit registers(a, b, c,

d, e, f, g, h)

2. Initialized by the 64 bits of the fractional parts of the

square-roots of the first eight primes in registers. These

are shown below in hex:

6a09e667f3bcc908bb67ae8584caa73b3c6ef372fe94f82

ba54ff53a5f1d36f1510e527fade682d1

 9b05688c2b3e6c1f 1f83d9abfb41bd6b

 5be0cd19137e2179

c. Process each 1024-bit Message Block Mi

1. Must generate what is recognized as a message

schedule. The message schedule for SHA-512 contain

80 rounds of 64-bit words labeled {W0,W1, . . . ,W79}.

The first sixteen of these, W0 through W15, are the

sixteen 64-bit words in the 1024-bit message block Mi.

The rest of the words in the message schedule are

obtained by

Wi = Wi-16 +64 (Wi-15) +64 Wi-7 +64 Wi-2)

 = ROTR
1
 (x) ROTR

8
(x) SHR

7
 (x)

 = ROTR
19

 (x) ROTR
61

(x) SHR
6
 (x)

ROTR
n
 (x) = circular right shift of the 64 bit arg by

n bits

SHR
n
 (x) = right shift of the 64 bit arg by n bits

with padding by zeros on the left

+64 = addition module 2
64

2. Round-based processing of input messages, the i
th

round is fed the 64-bit message schedule word Wi and a

special constant Ki.

3. Message block Mihas two inputs: the current contents

of the 1024-bit message block and the 512-bit hash

buffer

55 AJCST Vol. 8 No. 1 January-March 2019

Comparative Analysis of Hash Authentication Algorithms and ECC Based
Security Algorithms in Cloud Data

4. The round function consists of a sequence of

transpositions and substitutions, all designed to diffuse

to the maximum extent possible the content of the input

message block. The relationship between the contents

of the eight registers of the hash buffer at the input to

the i
th

 round and the output from this round is given by

h = g

g = f

f = e

e = d +64 T1

d = c

c = b

b = a

a = T1 +64 T2

Where +64 again means modulo 2
64

 addition and where

T1 = h +64 Ch(e, f, g) +64 ∑ e +64 Wi+64 Ki

T2 = ∑ a +64 Maj(a, b, c)

Ch(e, f, g) = (e AND f) (NOT e AND g)

Maj(a, b, c) = (a AND b) (a AND c) (b AND c)

∑ a = ROTR
28

 (a) ROTR
34

(a) ROTR
39

 (a)

∑ e = ROTR
14

 (e) ROTR
18

(e) ROTR
41

 (e)

+64 = addition modulo 2
64

5. The final output of the 80
th

 round is added at the

initiating of the round-based processing to the content

of the hash buffer. Each 64-bit word of the output of the

80
th

 modulo 2
64

are performed using addition operation.

d. Final

After that process, all the N message blocks have been

processed; the content of the hash buffer is the message

digest.

Fig.2Overall processing of the SHA-512 [10].

Example:

Input Type: TEXT

Content: Cloud Computing

Hash List [Hash Name (Length) - Hash Data]

SHA512 (64)

a4199f65e484c1df316f2581513ceae75698b372485

151c006d63fda5412cc7b2b051827759b256949696

69c60ff8811b4e58b67660a183218bd5e1a2dba6fa4

MD5 (16) –

3de3a4a550829dc4376329c29771bf78

TABLE I COMPARISON OF FEATURES OF MD5 AND SHA-512 ALGORITHMS

S. No. Features MD5 SHA-512

1 Year 1990 1993

2 Message digest length 128 512

3 Security Less secure More secure

4 Speed Faster Slower

5 No of steps
64 (4 rounds

of 16)

80 (4 rounds

of 20)

6 Collision complexity 264 280

7
Successful attacks
Reported

Yes Yes

III. RESULT AND DISCUSSION OF MD 5 AND SHA

For example, a system requires to design to obtain as input a

plaintext message, to analyze the message digest. For this

reason, a high level programming language used, JAVA and

implemented algorithm using this language. The Net-beans

IDE 8.1 Platform and JAVA language is used to achieve the

experimental results. The experiments were performed on

Windows 10 Pro with Intel(R) Core(TM) i5-2430M CPU

@2,40GHz (4CPUs), ~2.4 GHz architecture, and 8.00 GB

RAM. The performance of MD5, SHA-512 algorithms

verified on 32-bit processor, the MD5 has better

performance as made known in following figures.

A. Timing Analysis

The efficiency of an algorithm is mainly used to evaluate

the parameter of time analysis. An algorithm is efficient

even if it obtains less time to evaluate the digest. Figure 3

illustrate an experimental result after testing it on 25 sample

files of same size for each different file size. Graphical

representation of algorithms result are shown figure 3. At

this point, color line proves the execution time in seconds of

different algorithms for a 5 KB file, 10 KB file and 20KB

file. Finally, SHA-512 is compared with MD5 that the

performance of SHA-512 was slightly better than that of

MD5, but SHA-512 exhibited the lowest run time

performance. The SHA-512 tends to demonstrate an

exponential-like runtime execution.

Fig.3 Timing Comparisons between MD5, SHA-512

56AJCST Vol. 8 No. 1 January-March 2019

S. Hendry Leo Kanickam and L. Jayasimman

B. Security Analysis

In securityanalysis,another important aspect is included to

evaluate the efficiency of hash algorithm is its security.

Security of hash algorithm can be computed with the

support of avalanche effect and it has the two similar

message having difference of single bit only generates a

digest which results different from each other in 50 percent

bits. The algorithm nearer to the ideal condition is more

secure and the algorithms far away from this condition

considered less secure. MD5 algorithm has better security

level to compare SHA-512.

Fig. 4 Security comparison of MD5, SHA-512

IV. ENCRYPTION ALGORITHMS

A. ECC

Elliptic Curve Cryptography is faster than RSA and utilizes

smaller keys, however still affords reducing transmission

and storage requirements, the same level of security. It can

be solved the elliptic curve discrete log problem but it‟s a

much harder issue than factoring integers. ECC presents the

security per bit of public key technique [11].

1. Key Generation

In key generation, both public key and private key is an

important part to be generated in an efficient manner. The

message with receivers receives the public key from the

sender. The receiver will decrypt its private key.

To choose a number „d‟ within the range of „n‟.

To generate the public key using the following equation

Q = d * P

d = The random number is selected within the range of (1

to n-1). Pis the point on the curve.

„Q‟ is the public key and „d‟ is the private key.

2. Encryption

Let „m‟ be the message that we are sending. We have to

represent this message on the curve.

Consider „m‟ has the point „M‟ on the curve „E‟. Randomly

select „k‟ from [1 - (n-1)].

Two cipher texts will be generated let it be C1 and C2.

C1 = k*P

C2 = M + k*Q

C1 and C2 will be send.

3. Decryption

We have to get back the message „m‟ that was send to us,

M = C2 – d * C1

M is the original message that we have send.

How do we get back the message?

M = C2 – d * C1

„M‟ can be represented as „C2 – d * C1′

C2 – d * C1 = (M + k * Q) – d * (k * P) (C2 = M + k * Q

and C1 = k * P)

= M + k * d * P – d * k *P (canceling out k * d * P)

= M (Original Message)

Example:

1. Curve Size

Small , Curve Type: Real number, Curve attributes:

a=2, b=15, Curve: y² = x³ + 2x + 15, Point P = (0.75|-

4.11),Point Q = (0.72|4.1),Point R = P + Q =

(108007.77|2.147483647E7) (See Fig. 5)

Fig. 5 Curve Points

2. Curve Size

Large, Curve Type: F(p), Select curve attributes: ANSI

X9.62,Curve: prime192v1, Radix: 16 hexadecimal, Curve

attributes: y
2
 = x

3
 + 2x + 15,(See Figure 6) where,

a = fffffffffffffffffffffffffffffffefffffffffffffffc,

b =

64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1

 p = fffffffffffffffffffffffffffffffeffffffffffffffff

order of G :

ffffffffffffffffffffffff99def836146bc9b1b4d22831

Base point G: Point P

x =

12254520284046a953aad054a56f37f32d3ee74a70cc16c1

y=

a74eb0b373c203b72bf01404203f687186574da64fd45df9

Base point G: point Q

57 AJCST Vol. 8 No. 1 January-March 2019

Comparative Analysis of Hash Authentication Algorithms and ECC Based
Security Algorithms in Cloud Data

x =

c3cbb6f435b02845143702e090677a8d48172e31d983293b

 y= 17155a5dfda5f0a489d54fe2f3ef2c35d40990b2f9f586b7

Point R : R = P + Q

x =

63c0513338ab30f3b52907f120660bf907c9aca5b9ad2525

y=

89ab4e8537d8b868844a53bbbc420a5aae1a6927d1a4856b

Fig. 6Curve Points of P and Q

3. Curve Size

Large, Curve Type: F(2^m), Select curve attributes : ANSI

X9.62, Curve: c2pnb163v1, Radix : 16 hexadecimal

a = 72546b5435234a422e0789675f432c89435de5242

b = c9517d06d5240d3cff38c74b20b6cd4d6f9dd4d9

m = 163

Base Point P:

x = 00000003 6aa9c720 620ea74a 1b98fd83 5bf3fa93

0816de24

y= 00000003 d7e0fd08 0e2841a4 872c9e03 52e50799

519c9270

Base point Q:

X= 00000000 ab36ea3a e3b70610 5ff2574f 498a1ab9

82cae478

Y= 00000005 06b2493c ea737aba 87a370ef 716a6f0f

f3d2c6b8

Point R : R = P + Q

X= 00000001 83028a9b 677ea42d 19248f24 31c24e60

425fc86e

Y= 00000007 7743fd9d 43819576 eb3b90bc 0869de99

3165af21

4. Curve Size

Small, Curve Type: F(2^m), curve attributes : m=6, f =

x^6+x+1,a=1,b=1,Curve: y² + xy = x³ + x² + 1 , Point P =

(g18|g18), Point Q = (g34|g50), Point R = P + Q = (g10|g11)

B. ECDHA

ECDH is a key agreement protocol and it provides a shared

authentication key between P and Q [12,13]. A key pair

contains a private key d and a public key R= d * G (G is the

generator point). Let (dp, Rp) be the private key - public key

pair of P and (dq, Rq) be the private key - public key pair of

P and the overview of ECDH is given below.

Both the P and Q have

1. The end P calculates K = (XK, YK) = dp * Rq

2. The end Q calculates L = (XL, YL) = dB * RA

3. Since dpQq = dpdqG = dqdpG = dqQp. Therefore K = L and

hence XK = XL

4. Therefore the shared secret is XK

Example:

Step 1: Set public parameters

Curve type: F (p), Curve Size: Small, Domain parameters:

a=2,b=15,p=29, generator G= (5,11)

Step 2: Secrets are selected

Alice= 12, Bob=9

Step 3: The shared keys are generated

Secret key (d): Q=d*G , Alice=(5,18), Bob= (11,11)

Step 4: Exchange shared keys

Step 5: Generate common key

Key = sA*QB and key=sB*QA

S= (11,18)

C. ECDSA

In ECDSA (Elliptic Curve Digital Signature Algorithm is an

ECC scheme that requires a few modular operations and a

hash function. ECDSA is relatedtoElGamal‟s signature

technique other than it uses a slightly different signature

verification method that makes verification of signatures

faster [14].

The main difference between ECDSA and ElGamal‟s digital

signature system is that in ElGamal‟s system the

verification process requires three multiplications of an

integer times a point, whereas in ECDSA only two

multiplications of an integer times a point are required.

These multiplications are the most expensive parts of these

algorithms.

Given below explain the procedure of ECDSA. In ECDSA,

the signature generation and verification is similar to DSA,

but the key generation is based on ECC algorithm [15,16].

1. Key Pair Generation

In ECDSA, key pair generation is based on the domain

parameters. Given the elliptic curve E over Zp with number

of points that is divisible by the large prime n,

a. Choose a point P(xp, yp) on the curve and a random

integer d [1, n − 1].

b. Compute Q(xq, yq) = dP, make sure the point Q is also

on the curve.

c. Public key is (E,P, n,Q), and private key is d.

2. Signature Generation

Given a message m to be signed and the private key d,

58AJCST Vol. 8 No. 1 January-March 2019

S. Hendry Leo Kanickam and L. Jayasimman

a. Select a random integer k [1, n − 1].

b. Evaluate (x1, y1) = kP, convert x1 into integer and r = x1

mod n. (Return to step 1 if

b) r = 0)

a. Compute s = k
−1

(SHA1(m) + dr). (Return to step 1 if s

= 0)

b. Signature is (r, s) pair.

3. Signature Verification

Given the signature pair (r, s) on message m and public key

(E,P, n,Q),

1. Check that integers r, s [1, n − 1].

2. Compute w = s
−1

 mod n.

3. Compute u1 = SHA1(m)w mod n, u2 = rw mod n.

4. Calculate (x0, y0) = u1P + u2Q, convert x0 into integer and

v = x0 mod n.

5. Compare v and r, accept the signature only if v = r.

Example:

ECDSA Key Generation

Signature originator: hendrihendri

Domain parameters to be used 'EC-prime239v1':

Chosen signature algorithm: ECSP-DSA with hash function

SHA-1

Size of message M to be signed: 9 bytes

Bit length of c + bit length of d = 476 bits

Message m = "Cloud Computing"

20 20 43 6C 6F 75 64 20 43 6F 6D 70 75 74 69 6E 67

Cloud Computing

Elliptic curve E described through the curve equation: y^2 =

x^3 + ax + b (mod p) :

a =

883423532389192164791648750360308885314476597252

960362792450860609699836

b =

738525217406992417348596088038781724164860971797

098971891240423363193866

Private key = 1537859914

Public key W=(Wx,Wy) (W is a point on the elliptic curve)

of the signature originator:

Wx =

147725686096033178777934248266418837925095559073

411824357492706021376809

Wy =

160919462516789063671317533636959973111179312851

645365948486100202602809

Calculate a 'hash value' f (message representative) from

message M, using the chosen hash function SHA-1.

f =

145883180094509046448416237383712899732044164854

0

ECDSA Signature:

G has the prime order r and the cofactor k (r*k is the

number of points on E):

k = 1

Point G on curve E (described through its (x,y)

coordinates):

Gx =

110282003749548856476348533541186204577905061504

881242240149511594420911

Gy =

869078407435509378747351873793058868500210384946

040694651368759217025454

r =

883423532389192164791648750360308884807550341691

627752275345424702807307

The secret key s is the solution of the EC discrete log

problem W=x*G(x unknown)

S=4603419776579422684519853287240252411585731555

44832179679276669703259603

Signature:

c =

147725686096033178777934248266418837925095559073

411824357492706021376809

d =

595522074955150246352225841149857845213076100858

728291094353301485229658

ECDSA Verification:

If c or d does not fall within the interval [1, r-1] then the

signature is invalid:

c and d fall within the required interval [1, r-1].

Calculate the number h = d^(-1) mod r:

h =

712639260515375087861719638729379586887201669491

882073893208549199833159

Calculate the number h1 = f*h mod r:

h1 =

548405845492297792579891043651695754594577312396

98839761467211522679339

Calculate the number h2 = c*h mod r:

h2 =

402971820697583772099104763357788971108070894764

953834845947167468274080

Calculate the elliptic curve point P = h1 G + h2 W

(If P = (Px, Py) = (inf, inf) then the signature is invalid):

Px =

872657954012521758455980834210393555654374469957

427229761109261848254598

Py =

733938488033337736229825503670057677858195852917

805158753447088809562956

Convert the group element Px (x co-ordinates of point P on

elliptic curve) to the number i:

i =

872657954012521758455980834210393555654374469957

427229761109261848254598

Calculate the number c' = i mod r:

c' =

872657954012521758455980834210393555654374469957

427229761109261848254598

If c' = c then the signature is correct; otherwise the signature

is invalid: Verify results by comparing the two numbers c'

and c.

59 AJCST Vol. 8 No. 1 January-March 2019

Comparative Analysis of Hash Authentication Algorithms and ECC Based
Security Algorithms in Cloud Data

V. RESULT ANALYSIS

Measured performance of ECC, ECDH, and ECDSA

operations working under OpenSSL0.9.6b speed program

(enhanced to include ECC) on two platforms: (i) Ubuntu, a

Linux PDA equipped with a 200MHz Strong ARM

processor, and (ii) an UltraTM-80, a Sun server equipped

with a 450MHz UltraSPARC II processor. Given below

Figures demonstrate the performance, at the protocol level,

of ECC, ECDH, ECDSA.

A. Key Generation Time

For performance measure ECC, ECDH and ECDSA

implementation is entirely constant time. For ECDH, both

ours and OpenSSL‟s optimized NISTP implementations are

constant-time. In Ubuntu, the implementation is 2.33x faster

for ECDSA sign, 1.86x faster for ECDSA verify, and 1.8x

faster for the ECC key computation.

Fig. 7 Key generation time analysis

The Linux performance shows an even larger gap, with the

respective speedup factors of 2.46x, 1.91x and 1.81x (all

compared to OpenSSL‟s optimized NISTP implementation).

The graph representation of three algorithms illustrate in

figure 7. ECC Key generation performs better than ECDH

and ECDSA at all key lengths, and is especially obvious

when we increase the length of the key. Despite that the

ECC does not have dedicated resources to the

computationally intensive generation of prime numbers, but

it is superior ECDSA in speed to produce the public/private

key using comparable lengths. ECC key generation time

produces linearly with key size, while ECDH, ECDSA

grows exponentially. Finally the below figure conclude that

ECDSA algorithm is faster than others.

B. Encryption/Decryption Time

Encryption and decryption time is mainly based on

complexity of the algorithm, the processor speed, and so on.

ECC with small key size provides much faster

encryption/decryption as compared to others Figure 8.

ECDSA is growing exponentially with the given key size

and the Time of encryption/decryption in ECDH. ECC

encryption time differs linearly depending on the input key

size, also the decryption time remains in the exponential

increase. The decryption time differs exponentially with key

size for ECDH, ECDSA and it remains linear for ECC as

the case with encryption.

Fig. 8 Encryption and Decryption time analysis

C. Throughput

The throughput of the algorithmexecuted by split the entire

information in bytes by encryption time. Higher the

throughput is the efficiency of the system.

Fig. 9Throughput

The comparison between the ECDH, ECC and ECDSA is

using throughput in figure 9 given below. In cryptographic

algorithm, it is necessary to understand the size of output

and the size of the input as this is one of the important

property of an avalanche effect. Figure 9 demonstrates the

throughput (in operations / second) when switching from

standard OpenSSL to OpenSSL0.9.6b speed program; the

corresponding precise measurements are given in figure 9.

Because the OpenSSL library already contains optimized

code for fixed-point multiplication, the gain is highest for

random point multiplication, where throughput increases

from 1600 to over 6500 operations / second.

D. Average Processing Time

The average process time each algorithm has been proposed

above figure 10. The encryption and decryption time for

ECDSA algorithm is less than from all other approaches

(ECDSA, ECDH) in case of both for large files (10240 KB)

and small files (1 KB). However ECDSA approach has the

most excellent results than other approach with the intention

that it is proved from the graphs even if the size of patch file

size and encryption file size are large however it will take

less decryption and encryption time. Therefore, ECDSA

60AJCST Vol. 8 No. 1 January-March 2019

S. Hendry Leo Kanickam and L. Jayasimman

approach is useful for achieving reduced process time of

patch file on the large encrypted files.

Fig. 10 Average Processing Time

VI. CONCLUSION

This survey concluded the concept of data security in cloud

using encryption techniques and to check data integrity,

using secure hash function algorithms. For implementation

purpose, in this paper combined both encryption and Digital

Signatures algorithms as a result a powerful security and

data integrity service system is obtained.

It has been observed that SHA-512 and ECDSA is better

than all other algorithms reviewed in this paper. SHA-512

and ECDSA is more secure than other techniques. So, the

experimental results of research work show that the

technique of ECDSA with SHA-512 outperforms the

existing technique in terms of storage space, throughput,

security and time delay.

REFERENCES

[1] Yashapalkadam,: Security in cloud Computing A Transparent

View”, International Journal of Computer Science Emerging
Technology,Vol. 2,pp.316-322. October 2011.

[2] P.Metri and G.Sarote, “Privacy Issues and Challenges in Cloud

Computing”, International Journal of Advanced Engineering
Science and Technologies, No. 5,pp.1-6,2013.

[3] R.Buyya, C.S.Yeo, S.Venugopal, “Cloud Computing and

emerging IT platforms: vision, hype and reality for delivering

[4] computing as 5th utility”, Future Generation Computer System,

Vol. 25, pp.599-616, 2009.
[5] S. S. Chow, C.-K. Chu, X. Huang, J. Zhou, and R. H. Deng,

“Dynamic secure cloud storage with provenance,” in Cryptography

and Security: From Theory to Applications, Springer, pp. 442–464.
2012.

[6] E. M. Mohamed, H. S. Abdelkader, and S. El-Etriby, “Enhanced

data security model for cloud computing,” in Informatics and
Systems (INFOS), 2012 8th International Conference on IEEE,

pp.12-16. 2012.

[7] M.A. Al-Ahmad and I.F. Alshaikhli "Broad View of
Cryptographic Hash Functions", International Journal of

Computer Science Issues journal (ISI Journal), Vol. 10, No.

4,pp.102-108, 2013.
[8] A. Al-Vahed, and Sahhavi, “An overview of modern cryptography,

World Applied Programming, Vol. 1, No. 1,pp.55-61, 2011.

[9] A. Apostul, F. Pulcan, G. Ularu, G. Suciu and G. Todoran, “Study
on advantages and disadvantages of Cloud', International Journal

of Advanced Research in Computer Science and Software

Engineering, Vol. 2, No. 11,pp. 200-205, 2013.
[10] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, R.

Konwinski, G. Lee, D. Patterson, A. Rabkin, L. Stoica, and M.

Zaharia . “A View of Cloud Computing”, Comm. ACM, Vol. 53,
No. 4, pp. 50–58,2010.

[11] Ayushi, “A Symmetric Key Cryptographic Algorithm”,

International Journal of Computer Applications (0975 - 8887),
Vol. 1, No. 15, pp. 1-4,2010.

[12] J. Blomer, M. Otto, and J. P. Seifert, “Sign change fault attacks on
elliptic curve cryptosystems”, Fault Diagnosis and Tolerance in

Cryptography, pp. 36-52, 2006.

[13] S. K. Sood, “A combined approach to ensure data security in cloud
computing,” Journal of Network and Computer Applications, Vol.

35, No. 6, pp. 1831–1838, 2012.

[14] R. Manjusha and R. Ramachandran, “Comparative study of
attribute based encryption techniques in cloud computing,” In

Embedded Systems (ICES), 2014 International Conference on.

IEEE, pp.116–120,2014.
[15] B.B. Brumley and N. Tuveri, “Remote timing attacks are still

practical”, Computer Security –ESORICS, pp. 355-371, 2011.

[16] Patrick J. Flinn and James M. Jordan, “Using the RSA Algorithm

for Encryption and Digital Signatures: Can You Encrypt, Decrypt,

Sign and Verify without Infringing the RSA Patent”, International

Journal of Computer Science and Network Security, Vol.12 No.3,
pp-82, March 2012.

[17] G. Hu, D. Xiao, T. Xiang, S. Bai, and Y. Zhang, `”A compressive

sensing based privacy preserving outsourcing of image storage and
identity authentication service in cloud”, Inf. Sci., Vol. 387, pp.

132-145, May 2017.

[18] V. Paranjape and V. Pandey, “An improved authentication
technique with OTP in cloud computing”, International Journal of

Scientific Research in Computer Science and Engineering, Vol. 1,

No. 3, pp. 22-26, 2013.

61 AJCST Vol. 8 No. 1 January-March 2019

Comparative Analysis of Hash Authentication Algorithms and ECC Based
Security Algorithms in Cloud Data

