
Asian Journal of Computer Science and Technology 

ISSN: 2249-0701 (P) Vol.8 No.2, 2019, pp.1-5

© The Research Publication, www.trp.org.in 

DOI: https://doi.org/10.51983/ajcst-2019.8.2.2150

Evaluation of Random Number Generator Functions Using 

Statistical Analysis 

Rajashree Chaurasia 
Department of Computer Engineering, Guru Nanak Dev Institute of Technology 

Directorate of Training & Technical Education, Government of NCT of Delhi, India 
E-Mail: rajashree.chaurasia@gmail.com

Abstract - Most programming languages have in-built 

functions for the sole purpose of generating pseudo-random 

numbers. This manuscript is aimed at analyzing the 

appropriateness of some of these in-built functions for some 

basic goodness-of-fit statistical tests for random number 

generators. The document is divided into four sections. The 

first section gives a broad introduction about randomness and 

the methods of generation of pseudo-random numbers. Section 

two discusses the statistical tests that were employed for testing 

the built-in library functions for random number generation. 

This section is followed by an analysis of the data collected for 

the various statistics in the third section, and lastly, the fourth 

section presents the results of the data analysis.    
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I. INTRODUCTION

Random numbers have uses in any area where there arises a 

need to make an un-biased decision or choice. For instance, 

in ancient times in some countries, leaders and officials 

were not elected by ballot vote; rather, they were chosen 

using random procedures like drawing out names from a lot. 

The most noticeable example of randomness has been the 

process of genetic mutation and evolution where random 

sequences of DNA or RNA nucleotide bases are altered 

depending on some external conditions. Today, random 

numbers are used in a large number of fields [1]like 

simulation, mathematics and statistics, decision making, 

biological sciences, testing, network security and 

cryptography, communication systems, gaming and 

gambling, etc., etc. 

Random numbers are generally classified as either true-

random or pseudo-random. True random numbers are 

generated using physical or mechanical means; thus, these 

numbers are produced such that they are completely 

independent of other generated random numbers. This is 

why they are known as truly random. Wherever high quality 

randomness is desired, we use physical or mechanical 

generators. For other purposes, we use computational 

methods to generate random numbers and these are pseudo-

random in nature. This means that the next random number 

in the sequence is partially dependent on the previously 

generated random number.  

The broad categories of methods [1] [3] for pseudo-random 

number generation are 

1. Linear Congruential method

2. Quadratic Congruential method

3. Inversive Congruential method

4. Multiplicative Congruential method

By far, the most popular random number generators in use 

today are special cases of the linear congruential scheme, 

introduced by D. H. Lehmer in 1949 [4]. 

A. Linear Congruential Method

Four magic numbers [1] are selected such that 

X n+1 = (aXn + c) mod m, n ≥ 0 

where m is the modulus, 

a is the multiplier, 

c is the increment, 

Xn+1 is the next random number and 

Xn is the previous random number 

The limitation of this scheme is that the sequence of 

numbers repeats itself as the maximum period can only be 

of size m. Therefore, we need to carefully choose the values 

of the modulus, the multiplier and the seed or the starting 

number in the sequence (generally denoted by X0). 

B. Quadratic Congruential Method

The generalized equation in this scheme is 

Xn +1 = (dXn
2
 + aXn + c) mod m

where m is the modulus, 

a,d are multipliers, 

c is the increment, 

Xn+1 is the next random number and 

Xn is the previous random number 

The limitation of overflow which was present in the linear 

congruential method is removed in the quadratic scheme. 

C. Inversive Congruential Method

The generalized equation under this method is 

Xn +1 = (aXn
-1

+ c) mod p
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where p is the modulus (p is also prime), 

 a is the multiplier, 

 c is the increment, 

 Xn+1 is the next random number and 

Xn is the previous random number 

 

This method was suggested by Eichenauer and Lehn. 

 

D. Multiplicative Congruential Method 

 

George Marsaglia [5] suggested that the linear congruential 

method can be converted into a multiplicative form. His 

method defines the generalized equation as under: 

 

Xn = (Xn-24*Xn-55) mod m, n > 55 

where m is the modulus (m is also a multiple of 4), 

 Xn is the next random number and 

 Xn-24 is the 24
th

 previous random number 

 Xn-55 is the 55
th

 previous random number 

 

II. GOODNESS OF FIT TESTS 

 

There are many desirable characteristics of a good random 

number generator algorithm. For instance, the basic 

criterion for a random sequence generator algorithm is a 

long period. But this criterion is not good enough to judge 

the randomness of the generator algorithm. Other criteria 

like absence of a discernible pattern, the range of values that 

is expected to be observed, the nature of the distribution 

functions for the random sequence, etc. are also important. 

The theory of statistics provides us with some quantitative 

measures for randomness. There are an infinite number of 

such tests available but this manuscript discusses only a few 

of them that are the more standard or what we call as basic 

and trusted statistical tests.The author has performed 

extensive analysis of various random number generator 

functions of programming languages for the following 

statistical tests.  

 

A. Chi-Square Test 

 

The chi-square test (χ
2
 test) [1] is perhaps the best known of 

all statistical tests, and it is a basic method that is used in 

connection with many other tests. It is based on a 

comparison between the empirical distribution function and 

the theoretically expected distribution. 

 

We have k categories in this scheme and each observation 

falls under any one of these categories. For Oithe number of 

observed occurrences in a particular category, let Ei denote 

the number of expected occurrences, we calculate the chi-

square statistic as under: 

    ∑
(Oi    i)

2

 i

 

i 1

 

 

We count the number of observations falling into each of k 

categories and compute the quantity V. Then V is compared 

with the numbers in the standard chi-square statistic table 

can be found at [1] [2] for different degrees of freedom 

(which is one less than the number of categories, k). If V is 

less than the 1% entry or greater than the 99% entry, we 

reject the numbers as not sufficiently random. If V lies 

between the 1% and 5% entries or between the 95% and 

99% entries, the numbers are suspect; if V lies between the 

5% and 10% entries, or the 90% and 95% entries, the 

numbers might be almost suspect. The chi-square test is 

frequently done at least thrice on different sets of data, and 

if at least two of the three results are suspect the numbers 

are regarded as not sufficiently random [1]. 

 

B. Frequency or Equidistribution Test 

 

Frequency test [3] checks if the generated numbers are 

equally distributed and this test is used in collaboration with 

the chi-square test. Here, we count the number of 

occurrences of each number generated in the specific range 

and compute the chi-square statistic by taking the degrees of 

freedom as one less than the range and Ei as inverse of the 

maximum range. 

 

C. Poker Test 

 

The poker test [1] [7] takes random numbers in groups of k 

(successive) figures from the generated sequence and 

categorizes them as r different values. A chi-square test 

follows where the probability is calculated using the 

formula 

 

pr   
d (d   1) (d   r + 1)

d
k    

k

r
  

where  
k

r
  is Sterling‟s number of the second kind 

 

d is the maximum value that the random number 

can take. 

 

D. Kolmogorov-Smirnov Test 

 

The chi-square test is applicable in cases where the 

randomly generated numbers fall into a discrete number of 

categories. But there in a situation where the categories that 

the numbers fall into are continuous or infinite in nature, the 

chi-square test fails to be appropriate. This is especially the 

case with floating point or real numbers, i.e. numbers that 

range between 0 and 1. For such circumstances, we employ 

the Kolmogorov-Smirnov or KS test [1]. The random 

number generators distribution function Fn(x) is compared 

to the expected distribution function F(x) and two statistics 

are computed: 

 

 n
+
   √n max

-  x + 
( n(x)- (x)) 

 

 n
-
   √n max

-  x + 
( (x)- n(x)) 

 

Kn
+ 

measures the greatest amount of deviation when Fn is 

greater than F, and Kn
-
measures the maximum deviation 
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when Fnis less than F. Like the chi-square table, we can 

look-up the values for the above two statistics in the KS 

table (found at [1]). 

 

III. DATA ANALYSIS 

 

All implementation for the goodness-of-fit statistics has 

been done in C/C++ programming language. Each of the 

built-in library functions (rand and random in Turbo C++ 

3.0 and GCC compiler, nextInt and nextFloat in Java, Next 

and Next Double for Microsoft‟s  isual C++ and  isual C# 

2005) have been tested for each of the four standard 

goodness-of-fit statistical tests viz. Chi-square, Frequency, 

Poker and KS test. 

 

In all the tabular data that follow, numbers in red colour 

correspond to „rejected/failed result‟; numbers in orange 

colour signify „suspected result‟ and numbers in green 

colour represent „satisfactory result‟. 

A. Chi-square Test on Various Compilers 

 

 or Borland‟s Turbo C++ compiler version 3.0, both the 

functions: rand and random were tested by the author for the 

chi-square statistic. The function rand was paired with srand 

and random with randomize, where srand and randomize are 

both random seed generators for the random generator 

functions - rand and random. 

  

Two sets of data were taken for random: one for 1000 

random integers between 0 and 1000 (including 0 and 

excluding1000), and the other for 1,000,000 random 

integers between the same range. For rand, the sets were 1 

million random integer numbers in the range [0, 1000) and 1 

million random integer numbers in the range [0, 10000). For 

Java, VC++, VC# and GCC compilers, the same nature of 

data-sets was used: 1 million random integer numbers in the 

range [0, 1000) and 1 million random integer numbers in the 

range [0, 10000). 
 

TABLE I DATA FOR CHI-SQUARE STATISTIC 
 

Compiler 
Range, 

Numbers 
Set 1 Set 2 Set 3 

Turbo C++ (random) 
1000,1000 15.940001 13.380000 3.120000 

1000,1000000 13.962389 11.651489 20.523750 

Turbo C++ (rand) 
1000,1000000 181.384811 142.377869 143.787628 

10000,1000000 16761.384766 16657.951172 16628.130859 

Java 
1000,1000000 13.428130 6.664810 9.033429 

10000,1000000 6.194030 7.504190 10.712070 

VC++ 
1000,1000000 4.052150 4.532610 4.968510 

10000,1000000 6.710070 9.88089 6.563169 

VC# 
1000,1000000 5.684190 6.343290 8.370410 

10000,1000000 5.953390 5.667530 3.678570 

GCC 
1000,1000000 14.226200 11.601140 7.477960 

10000,1000000 5.780420 8.463280 6.683540 

 

The result of the Chi-square statistic analysis for the 

function random in Turbo C++ 3.0 is mostly „suspect‟ or 

„reject‟. This shows that random did not pass the χ
2
 

goodness-of-fit test. 

 

Similarly, tests were conducted for the rand function and it 

was found that rand failed terribly in this case. All the 

probabilities of the chi-square statistic turn out to be in the 

less than 0.01% range which is extremely rare and thus, not 

at all a characteristic of random behavior.  

 

This is so because rand has a period of only 232 which is 

not large enough for most practical applications of random 

numbers. In this context, random seems to be a slightly 

better choice. All the other compilers generated satisfactory 

results and passed the chi-square test. The functions 

available for random number generation in these languages 

global randomness over the rand and random functions are 

clearly superior generators and surpass the property of 

available in standard C libraries. 
 

B. Frequency Test on Various Compilers 

 

 or Borland‟s Turbo C++ compiler version 3.0, both the 

functions: rand and random were tested by the author for the 

chi-square equidistribution statistic. The function rand was 

paired with srand and random with randomize, where srand 

and randomize are both random seed generators for the 

random generator functions - rand and random. Two sets of 

data were taken: 1 million random integer numbers in the 

range [0, 1000) and 1 million random integer numbers in the 

range [0, 10000). 

 

Degrees of freedom are taken to be 999 for numbers in the 

range 0 to 999 and 9999 for numbers in the range 0 to 9999. 

The chi-square values for such high degrees of freedom can 

be found at [6].  

 

For Java, VC++, VC# and GCC compilers, similar nature of 

data-sets were used: 1 million random integer numbers in 

the range [0, 1000) and 1 million random integer numbers in 

the range [0, 10000). 
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All the above compilers generated satisfactory results and 

passed the frequency test. The functions available for 

random number generation in these languages are clearly 

superior generators and surpass the property of local 

randomness over the rand and random functions available in 

standard C libraries. 

 
TABLE II DATA FOR FREQUENCY STATISTIC 

 

Compiler Range, Numbers Set 1 Set 2 Set 3 

Turbo C++ 

(random) 

1000,1000 1102.924805 1145.662354 1047.042358 

1000,1000000 28925.566406 28718.972656 28191.701172 

Turbo C++ 

(rand) 

1000,1000000 1171.201050 1214.511475 1170.268921 

10000,1000000 29055.613281 28875.595703 28508.636719 

Java 
1000,1000000 930.928772 987.450378 948.042542 

10000,1000000 9865.218750 9877.512695 9843.210938 

VC++ 
1000,1000000 968.678101 991.907593 981.381165 

10000,1000000 9968.183594 10039.478516 9799.747070 

VC# 
1000,1000000 968.224304 949.746521 965.967346 

10000,1000000 10089.733398 9900.225586 9849.294922 

GCC 
1000,1000000 949.483398 1006.139282 1018.885254 

10000,1000000 9921.503906 9961.891602 9912.098633 

 

C. Poker Test on Various Compilers 

 

The poker test is used in combination with the chi-square 

test. For the range of integer random numbers generated, the 

observed occurrence of each hand is compared with its 

expected frequency. The poker test is the worst and least 

comprehensive of all tests. To create a simpler version of 

this test, the author counted the number of distinct values, 

which is called r, in the set of five categories as below:  

5 values = all different; 

4 values = one pair; 

3 values = two pairs, or three of a kind; 

2 values = full house, or four of a kind; 

1 value = five of a kind. 

 

Thus, r ranges from 1 to 5. The range of random numbers 

generated is also from 1 to 5 for all compilers. Four sets of 

data for 100, 1000, 10000 and 100000 random numbers 

have been tested by the author for each compiler. 

TABLE III DATA FOR POKER STATISTIC 
 

Compiler N=100 N=1000 N=10000 N=100000 

Turbo C++ (random) 9.817709 0.442708 5.914322 0.558047 

Turbo C++ (rand) 8.020834 13.567709 5.913803 6.764818 

Java 2.9427083 7.0677090 5.1885423 5.1014063 

VC++ 1.640625 3.450520 0.906510 2.962344 

VC# 6.82291667 1.56510446 4.8776053 5.18893229 

GCC 7.109375 4.38541564 5.1106773 3.17302083 

 

As is apparent from the data above, both the functions 

random and rand fail for the poker test as well. Here we 

have only 4 degrees of freedom as there are only 5 

categories for partitioning the data sets. All the other 

compilers generated satisfactory results and passed the 

poker test. The functions available for random number 

property of associative correlation over the rand and random 

functions available in standard C libraries. 

 

D. KS Test on Various Compilers 

 

This test is performed on uniform random numbers in the 

range (0, 1). Three sets of data with 10 random numbers 

(floating point) between 0 and 1 were tested for in each 

compiler. 

 

As is apparent from the data above, both the functions 

random and rand (in Turbo C++ 3.0 compiler) fail for the 

KS test as well. All the other compilers generated 

satisfactory results and passed the KS test.  

 

The functions available for random number generation in 

these languages are clearly superior generators and surpass 

the property of both global and local randomness over the 

rand and random functions available in standard C libraries. 
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TABLE IV DATA FOR KS STATISTIC 
 

Compiler KS Set 1 Set 2 Set 3 

Turbo C++ (random) 
K10+ 0.92295500 1.403997524 1.522886513 

K10- 1.23918277 1.087769756 1.206658747 

Turbo C++ (rand) 
K10+ 1.70605828 1.032202213 0.843528079 

K10- 1.38983051 1.348429979 1.159755845 

Java 
K10+ 0.70666596 0.418513407 0.778027980 

K10- 0.39043820 0.458627342 0.643853171 

VC++ 
K10+ 0.77027315 0.388148650 0.897749607 

K10- 0.45404538 0.604176229 0.581521841 

VC# 
K10+ 0.73304877 0.657696044 0.530550232 

K10- 0.65820514 0.565283226 0.560006243 

GCC 
K10+ 0.78439032 0.450447479 0.699597011 

K10- 0.71067763 0.752353289 0.719702772 

 

IV. CONCLUSION 

 

Extensive research was conducted by the author to put to 

test some of the built-in functions available for generating 

random numbers in some commonly used programming 

languages viz. Java, C++, C#, C and their compilers like the 

Borland compiler version 3.0 for C/C++, the GNU GCC 

compiler for C, the Visual C++ 2005 compiler for C++, the 

Visual C# 2005 compiler for C# and the Javac compiler 

version 1.6.0 Update 31 for Java. These built-in methods 

were tested by four standard goodness-of-fit statistical tests 

for random behaviour (viz. Chi-Square test, Equidistribution 

test, Partition or Poker test and the Kolmogorov-Smirnov 

test) using datasets of 1 million integer random numbers 

between specific ranges and 10 floating point random digits 

with high precision, between the range 0 and 1. The results 

of the data collected during this research clearly shows that 

the functions rand and random in Turbo C++ 3.0 library 

failed all the four goodness-of-fit tests. All other compilers 

generated satisfactory results and passed each test. This 

implies that due to the very short period length of the 

functions, the 1 million random numbers generated using 

the same did not exhibit agreeable random behaviour. Thus, 

it can be said that these generator functions have a poor 

performance when compared to the library functions of the 

other compilers namely, Java, VC++, VC# and GCC. The 

frequency test, being the most comprehensive of all tests 

gave striking results against Turbo C++ functions; they 

failed badly in the equidistribution test. This is because the 

frequency test compares the occurrence of each possible 

random number in the specified range with what its 

expected frequency should be and then applies the chi-

square statistic. On the contrary, the poker test was the 

worst among the group of test employed. This is because 

when the range of random numbers generated increases, the 

probabilities of the categories of all fives, four-of-a-kind, 

three-of-a-kind and two-pair also decrease proportionately. 

Thus, the only category for which the occurrence can be 

counted is „bust‟ or all-different. Using this category alone 

does not give a proper estimate on the goodness of the 

randomness property. This makes the poker test applicable 

for very small ranges only. For this purpose, the poker test 

was carried out for random numbers in the closed range of 

[1, 5]. 
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