
Asian Journal of Computer Science and Technology

ISSN: 2249-0701 (P) Vol.8 No.2, 2019, pp.1-5

© The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ajcst-2019.8.2.2150

Evaluation of Random Number Generator Functions Using

Statistical Analysis

Rajashree Chaurasia
Department of Computer Engineering, Guru Nanak Dev Institute of Technology

Directorate of Training & Technical Education, Government of NCT of Delhi, India
E-Mail: rajashree.chaurasia@gmail.com

Abstract - Most programming languages have in-built

functions for the sole purpose of generating pseudo-random

numbers. This manuscript is aimed at analyzing the

appropriateness of some of these in-built functions for some

basic goodness-of-fit statistical tests for random number

generators. The document is divided into four sections. The

first section gives a broad introduction about randomness and

the methods of generation of pseudo-random numbers. Section

two discusses the statistical tests that were employed for testing

the built-in library functions for random number generation.

This section is followed by an analysis of the data collected for

the various statistics in the third section, and lastly, the fourth

section presents the results of the data analysis.

Keywords: Random Numbers, Statistical Analysis, Random

Number Generation, Programming Language, Built-in

Functions, C/C++, C#, Java

I. INTRODUCTION

Random numbers have uses in any area where there arises a

need to make an un-biased decision or choice. For instance,

in ancient times in some countries, leaders and officials

were not elected by ballot vote; rather, they were chosen

using random procedures like drawing out names from a lot.

The most noticeable example of randomness has been the

process of genetic mutation and evolution where random

sequences of DNA or RNA nucleotide bases are altered

depending on some external conditions. Today, random

numbers are used in a large number of fields [1]like

simulation, mathematics and statistics, decision making,

biological sciences, testing, network security and

cryptography, communication systems, gaming and

gambling, etc., etc.

Random numbers are generally classified as either true-

random or pseudo-random. True random numbers are

generated using physical or mechanical means; thus, these

numbers are produced such that they are completely

independent of other generated random numbers. This is

why they are known as truly random. Wherever high quality

randomness is desired, we use physical or mechanical

generators. For other purposes, we use computational

methods to generate random numbers and these are pseudo-

random in nature. This means that the next random number

in the sequence is partially dependent on the previously

generated random number.

The broad categories of methods [1] [3] for pseudo-random

number generation are

1. Linear Congruential method

2. Quadratic Congruential method

3. Inversive Congruential method

4. Multiplicative Congruential method

By far, the most popular random number generators in use

today are special cases of the linear congruential scheme,

introduced by D. H. Lehmer in 1949 [4].

A. Linear Congruential Method

Four magic numbers [1] are selected such that

X n+1 = (aXn + c) mod m, n ≥ 0

where m is the modulus,

a is the multiplier,

c is the increment,

Xn+1 is the next random number and

Xn is the previous random number

The limitation of this scheme is that the sequence of

numbers repeats itself as the maximum period can only be

of size m. Therefore, we need to carefully choose the values

of the modulus, the multiplier and the seed or the starting

number in the sequence (generally denoted by X0).

B. Quadratic Congruential Method

The generalized equation in this scheme is

Xn +1 = (dXn
2
 + aXn + c) mod m

where m is the modulus,

a,d are multipliers,

c is the increment,

Xn+1 is the next random number and

Xn is the previous random number

The limitation of overflow which was present in the linear

congruential method is removed in the quadratic scheme.

C. Inversive Congruential Method

The generalized equation under this method is

Xn +1 = (aXn
-1

+ c) mod p

1 AJCST Vol.8 No.2 April-June 2019

(Received 3 February 2019; Revised 21 February 2019; Accepted 23 March 2019; Available online 1 April 2019)

where p is the modulus (p is also prime),

 a is the multiplier,

 c is the increment,

 Xn+1 is the next random number and

Xn is the previous random number

This method was suggested by Eichenauer and Lehn.

D. Multiplicative Congruential Method

George Marsaglia [5] suggested that the linear congruential

method can be converted into a multiplicative form. His

method defines the generalized equation as under:

Xn = (Xn-24*Xn-55) mod m, n > 55

where m is the modulus (m is also a multiple of 4),

 Xn is the next random number and

 Xn-24 is the 24
th

 previous random number

 Xn-55 is the 55
th

 previous random number

II. GOODNESS OF FIT TESTS

There are many desirable characteristics of a good random

number generator algorithm. For instance, the basic

criterion for a random sequence generator algorithm is a

long period. But this criterion is not good enough to judge

the randomness of the generator algorithm. Other criteria

like absence of a discernible pattern, the range of values that

is expected to be observed, the nature of the distribution

functions for the random sequence, etc. are also important.

The theory of statistics provides us with some quantitative

measures for randomness. There are an infinite number of

such tests available but this manuscript discusses only a few

of them that are the more standard or what we call as basic

and trusted statistical tests.The author has performed

extensive analysis of various random number generator

functions of programming languages for the following

statistical tests.

A. Chi-Square Test

The chi-square test (χ
2
 test) [1] is perhaps the best known of

all statistical tests, and it is a basic method that is used in

connection with many other tests. It is based on a

comparison between the empirical distribution function and

the theoretically expected distribution.

We have k categories in this scheme and each observation

falls under any one of these categories. For Oithe number of

observed occurrences in a particular category, let Ei denote

the number of expected occurrences, we calculate the chi-

square statistic as under:

 ∑
(Oi i)

2

 i

i 1

We count the number of observations falling into each of k

categories and compute the quantity V. Then V is compared

with the numbers in the standard chi-square statistic table

can be found at [1] [2] for different degrees of freedom

(which is one less than the number of categories, k). If V is

less than the 1% entry or greater than the 99% entry, we

reject the numbers as not sufficiently random. If V lies

between the 1% and 5% entries or between the 95% and

99% entries, the numbers are suspect; if V lies between the

5% and 10% entries, or the 90% and 95% entries, the

numbers might be almost suspect. The chi-square test is

frequently done at least thrice on different sets of data, and

if at least two of the three results are suspect the numbers

are regarded as not sufficiently random [1].

B. Frequency or Equidistribution Test

Frequency test [3] checks if the generated numbers are

equally distributed and this test is used in collaboration with

the chi-square test. Here, we count the number of

occurrences of each number generated in the specific range

and compute the chi-square statistic by taking the degrees of

freedom as one less than the range and Ei as inverse of the

maximum range.

C. Poker Test

The poker test [1] [7] takes random numbers in groups of k

(successive) figures from the generated sequence and

categorizes them as r different values. A chi-square test

follows where the probability is calculated using the

formula

pr
d (d 1) (d r + 1)

d
k

k

r

where
k

r
 is Sterling‟s number of the second kind

d is the maximum value that the random number

can take.

D. Kolmogorov-Smirnov Test

The chi-square test is applicable in cases where the

randomly generated numbers fall into a discrete number of

categories. But there in a situation where the categories that

the numbers fall into are continuous or infinite in nature, the

chi-square test fails to be appropriate. This is especially the

case with floating point or real numbers, i.e. numbers that

range between 0 and 1. For such circumstances, we employ

the Kolmogorov-Smirnov or KS test [1]. The random

number generators distribution function Fn(x) is compared

to the expected distribution function F(x) and two statistics

are computed:

 n
+
 √n max

- x +
(n(x)- (x))

 n
-
 √n max

- x +
((x)- n(x))

Kn
+

measures the greatest amount of deviation when Fn is

greater than F, and Kn
-
measures the maximum deviation

2AJCST Vol.8 No.2 April-June 2019

Rajashree Chaurasia

when Fnis less than F. Like the chi-square table, we can

look-up the values for the above two statistics in the KS

table (found at [1]).

III. DATA ANALYSIS

All implementation for the goodness-of-fit statistics has

been done in C/C++ programming language. Each of the

built-in library functions (rand and random in Turbo C++

3.0 and GCC compiler, nextInt and nextFloat in Java, Next

and Next Double for Microsoft‟s isual C++ and isual C#

2005) have been tested for each of the four standard

goodness-of-fit statistical tests viz. Chi-square, Frequency,

Poker and KS test.

In all the tabular data that follow, numbers in red colour

correspond to „rejected/failed result‟; numbers in orange

colour signify „suspected result‟ and numbers in green

colour represent „satisfactory result‟.

A. Chi-square Test on Various Compilers

 or Borland‟s Turbo C++ compiler version 3.0, both the

functions: rand and random were tested by the author for the

chi-square statistic. The function rand was paired with srand

and random with randomize, where srand and randomize are

both random seed generators for the random generator

functions - rand and random.

Two sets of data were taken for random: one for 1000

random integers between 0 and 1000 (including 0 and

excluding1000), and the other for 1,000,000 random

integers between the same range. For rand, the sets were 1

million random integer numbers in the range [0, 1000) and 1

million random integer numbers in the range [0, 10000). For

Java, VC++, VC# and GCC compilers, the same nature of

data-sets was used: 1 million random integer numbers in the

range [0, 1000) and 1 million random integer numbers in the

range [0, 10000).

TABLE I DATA FOR CHI-SQUARE STATISTIC

Compiler
Range,

Numbers
Set 1 Set 2 Set 3

Turbo C++ (random)
1000,1000 15.940001 13.380000 3.120000

1000,1000000 13.962389 11.651489 20.523750

Turbo C++ (rand)
1000,1000000 181.384811 142.377869 143.787628

10000,1000000 16761.384766 16657.951172 16628.130859

Java
1000,1000000 13.428130 6.664810 9.033429

10000,1000000 6.194030 7.504190 10.712070

VC++
1000,1000000 4.052150 4.532610 4.968510

10000,1000000 6.710070 9.88089 6.563169

VC#
1000,1000000 5.684190 6.343290 8.370410

10000,1000000 5.953390 5.667530 3.678570

GCC
1000,1000000 14.226200 11.601140 7.477960

10000,1000000 5.780420 8.463280 6.683540

The result of the Chi-square statistic analysis for the

function random in Turbo C++ 3.0 is mostly „suspect‟ or

„reject‟. This shows that random did not pass the χ
2

goodness-of-fit test.

Similarly, tests were conducted for the rand function and it

was found that rand failed terribly in this case. All the

probabilities of the chi-square statistic turn out to be in the

less than 0.01% range which is extremely rare and thus, not

at all a characteristic of random behavior.

This is so because rand has a period of only 232 which is

not large enough for most practical applications of random

numbers. In this context, random seems to be a slightly

better choice. All the other compilers generated satisfactory

results and passed the chi-square test. The functions

available for random number generation in these languages

global randomness over the rand and random functions are

clearly superior generators and surpass the property of

available in standard C libraries.

B. Frequency Test on Various Compilers

 or Borland‟s Turbo C++ compiler version 3.0, both the

functions: rand and random were tested by the author for the

chi-square equidistribution statistic. The function rand was

paired with srand and random with randomize, where srand

and randomize are both random seed generators for the

random generator functions - rand and random. Two sets of

data were taken: 1 million random integer numbers in the

range [0, 1000) and 1 million random integer numbers in the

range [0, 10000).

Degrees of freedom are taken to be 999 for numbers in the

range 0 to 999 and 9999 for numbers in the range 0 to 9999.

The chi-square values for such high degrees of freedom can

be found at [6].

For Java, VC++, VC# and GCC compilers, similar nature of

data-sets were used: 1 million random integer numbers in

the range [0, 1000) and 1 million random integer numbers in

the range [0, 10000).

3 AJCST Vol.8 No.2 April-June 2019

Evaluation of Random Number Generator Functions Using Statistical Analysis

All the above compilers generated satisfactory results and

passed the frequency test. The functions available for

random number generation in these languages are clearly

superior generators and surpass the property of local

randomness over the rand and random functions available in

standard C libraries.

TABLE II DATA FOR FREQUENCY STATISTIC

Compiler Range, Numbers Set 1 Set 2 Set 3

Turbo C++

(random)

1000,1000 1102.924805 1145.662354 1047.042358

1000,1000000 28925.566406 28718.972656 28191.701172

Turbo C++

(rand)

1000,1000000 1171.201050 1214.511475 1170.268921

10000,1000000 29055.613281 28875.595703 28508.636719

Java
1000,1000000 930.928772 987.450378 948.042542

10000,1000000 9865.218750 9877.512695 9843.210938

VC++
1000,1000000 968.678101 991.907593 981.381165

10000,1000000 9968.183594 10039.478516 9799.747070

VC#
1000,1000000 968.224304 949.746521 965.967346

10000,1000000 10089.733398 9900.225586 9849.294922

GCC
1000,1000000 949.483398 1006.139282 1018.885254

10000,1000000 9921.503906 9961.891602 9912.098633

C. Poker Test on Various Compilers

The poker test is used in combination with the chi-square

test. For the range of integer random numbers generated, the

observed occurrence of each hand is compared with its

expected frequency. The poker test is the worst and least

comprehensive of all tests. To create a simpler version of

this test, the author counted the number of distinct values,

which is called r, in the set of five categories as below:

5 values = all different;

4 values = one pair;

3 values = two pairs, or three of a kind;

2 values = full house, or four of a kind;

1 value = five of a kind.

Thus, r ranges from 1 to 5. The range of random numbers

generated is also from 1 to 5 for all compilers. Four sets of

data for 100, 1000, 10000 and 100000 random numbers

have been tested by the author for each compiler.

TABLE III DATA FOR POKER STATISTIC

Compiler N=100 N=1000 N=10000 N=100000

Turbo C++ (random) 9.817709 0.442708 5.914322 0.558047

Turbo C++ (rand) 8.020834 13.567709 5.913803 6.764818

Java 2.9427083 7.0677090 5.1885423 5.1014063

VC++ 1.640625 3.450520 0.906510 2.962344

VC# 6.82291667 1.56510446 4.8776053 5.18893229

GCC 7.109375 4.38541564 5.1106773 3.17302083

As is apparent from the data above, both the functions

random and rand fail for the poker test as well. Here we

have only 4 degrees of freedom as there are only 5

categories for partitioning the data sets. All the other

compilers generated satisfactory results and passed the

poker test. The functions available for random number

property of associative correlation over the rand and random

functions available in standard C libraries.

D. KS Test on Various Compilers

This test is performed on uniform random numbers in the

range (0, 1). Three sets of data with 10 random numbers

(floating point) between 0 and 1 were tested for in each

compiler.

As is apparent from the data above, both the functions

random and rand (in Turbo C++ 3.0 compiler) fail for the

KS test as well. All the other compilers generated

satisfactory results and passed the KS test.

The functions available for random number generation in

these languages are clearly superior generators and surpass

the property of both global and local randomness over the

rand and random functions available in standard C libraries.

4AJCST Vol.8 No.2 April-June 2019

Rajashree Chaurasia

TABLE IV DATA FOR KS STATISTIC

Compiler KS Set 1 Set 2 Set 3

Turbo C++ (random)
K10+ 0.92295500 1.403997524 1.522886513

K10- 1.23918277 1.087769756 1.206658747

Turbo C++ (rand)
K10+ 1.70605828 1.032202213 0.843528079

K10- 1.38983051 1.348429979 1.159755845

Java
K10+ 0.70666596 0.418513407 0.778027980

K10- 0.39043820 0.458627342 0.643853171

VC++
K10+ 0.77027315 0.388148650 0.897749607

K10- 0.45404538 0.604176229 0.581521841

VC#
K10+ 0.73304877 0.657696044 0.530550232

K10- 0.65820514 0.565283226 0.560006243

GCC
K10+ 0.78439032 0.450447479 0.699597011

K10- 0.71067763 0.752353289 0.719702772

IV. CONCLUSION

Extensive research was conducted by the author to put to

test some of the built-in functions available for generating

random numbers in some commonly used programming

languages viz. Java, C++, C#, C and their compilers like the

Borland compiler version 3.0 for C/C++, the GNU GCC

compiler for C, the Visual C++ 2005 compiler for C++, the

Visual C# 2005 compiler for C# and the Javac compiler

version 1.6.0 Update 31 for Java. These built-in methods

were tested by four standard goodness-of-fit statistical tests

for random behaviour (viz. Chi-Square test, Equidistribution

test, Partition or Poker test and the Kolmogorov-Smirnov

test) using datasets of 1 million integer random numbers

between specific ranges and 10 floating point random digits

with high precision, between the range 0 and 1. The results

of the data collected during this research clearly shows that

the functions rand and random in Turbo C++ 3.0 library

failed all the four goodness-of-fit tests. All other compilers

generated satisfactory results and passed each test. This

implies that due to the very short period length of the

functions, the 1 million random numbers generated using

the same did not exhibit agreeable random behaviour. Thus,

it can be said that these generator functions have a poor

performance when compared to the library functions of the

other compilers namely, Java, VC++, VC# and GCC. The

frequency test, being the most comprehensive of all tests

gave striking results against Turbo C++ functions; they

failed badly in the equidistribution test. This is because the

frequency test compares the occurrence of each possible

random number in the specified range with what its

expected frequency should be and then applies the chi-

square statistic. On the contrary, the poker test was the

worst among the group of test employed. This is because

when the range of random numbers generated increases, the

probabilities of the categories of all fives, four-of-a-kind,

three-of-a-kind and two-pair also decrease proportionately.

Thus, the only category for which the occurrence can be

counted is „bust‟ or all-different. Using this category alone

does not give a proper estimate on the goodness of the

randomness property. This makes the poker test applicable

for very small ranges only. For this purpose, the poker test

was carried out for random numbers in the closed range of

[1, 5].

REFERENCES

[1] E. Knuth, “The Art of Computer Programming”, Semi-numerical

Algorithms, 3rd ed., Boston, MA, USA: Addison Wesley Longman

Inc., Vol. 2, 1997.

[2] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables,

Washington, D.C., USA: Government Printing Office, Table 26.8,

1964.
[3] N. Deo, System Simulation with Digital Computer, NJ, USA: Prentice

Hall Inc., 2006.

[4] D. H. Lehmer, “Mathematical methods in large-scale computing
units”, In Proc. 2nd Symposium on Large-Scale Digital Calculating

Machinery, Cambridge, MA: Harvard University Press, pp. 141-146,

1951.
[5] G. Marsaglia, “A Current iew of Random Number Generators”,

Keynote Address, In Proc. of the Computer Science and Statistics:

16thSymposium on the Interface, Atlanta, 1954.
[6] Fourmilab Switzerland Chi-square calculator. [Online]. Available:

http://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html,

2012.
[7] M. Rütti, “A Random Number Generator Test Suite for the C++

Standard”, Diploma Thesis, Institute for Theoretical Physics, ETH

Zürich, March 2004.

5 AJCST Vol.8 No.2 April-June 2019

Evaluation of Random Number Generator Functions Using Statistical Analysis

