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Abstract - Reverse conversion is an important exercise in 
achieving the properties of Residue Number System (RNS). 
Current algorithms available for reverse conversion exhibits 
greater computational overhead in terms of speed and area. In 
this paper, we have developed a new algorithm for reverse 
conversion for two-moduli set and three-moduli set that are 
very simple and with fewer multiplicative inverse operations 
than there are in the traditional algorithms like the Chinese 
Remainder Theorem (CRT) and Mixed Radix Conversion 
(MRC). 
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I. INTRODUCTION

Residue Number System can be traced back to Sun Tzu, 
which is an old number system. Large binary and decimal 
numbers are represented in RNS uniquely using a set of 
smaller residues, those results in carry-free, high speed 
arithmetic operations. Parallelism is also ensured in RNS. 
[1][2][3]. Numbers are represented in this system by taking 
modulus operation where the divider is known as the 
modulo and the remainder is the residue which represents 
the number in RNS. 

The main advantage of RNS over the conventional number 
systems is that the standard arithmetic operations can be 
easily implemented due to the carry propagation inherent in 
the conventional number system. This ensures the design of 
high speed digital processors. RNS is very helpful in 
applications requiring many additions and for that matter 
many multiplication (multiplication is a repeated form of 
addition) but with no or fewer number of division and 
comparisons. The main problems of RNS representation are 
that division, magnitude comparison, scaling, overflow 
detection and sign detection are difficult to implement. RNS 
is suitable in applications such as cryptography, digital 
signal processing, image processing, speech processing etc 
[1]-[4]. 

II. BACKGROUND

The RNS is defined in terms of a set of relatively prime 
moduli, 𝑃𝑃 =  {𝑚𝑚1 ,𝑚𝑚2, … … .𝑚𝑚𝑛𝑛}, where𝐺𝐺𝐺𝐺𝐺𝐺 �𝑚𝑚𝑖𝑖 ,𝑚𝑚𝑗𝑗� = 1 
for 𝑖𝑖 ≠ 𝑗𝑗. 𝑀𝑀 = ∏ 𝑚𝑚𝑖𝑖

𝑛𝑛
𝑖𝑖=1 is the dynamic range. Any integer 𝑋𝑋 

in the range [0, M) called the legitimate range can be 
unambiguously represented [5],[6].   

To perform an arithmetic operation in the residue number 
representation to achieve the properties of RNS, raises the 
need to be able to convert from the conventional 
representation to RNS and vice versa. The conversion from 
the conventional numbers to RNS is known as forward 
conversion and process is very simple and direct operation; 
divide the given number by each modulus in the moduli set 
and taking string of the remainders constitute the RNS 
representation. The conversion form RNS to the 
conversional number system is referred to as 
reverse/backward conversion. This operation is very 
difficult to accomplish and it introduces grave overhead in 
terms of speed and complexity. The process of 
reverse/backward conversions are shrouded on the Chinese 
Remainder Theorem (CRT) or the Mixed-Radix Conversion 
(MRC) [7]  

III. CHINESE REMAINDER THEOREM (CRT)

Given a set of pair-wise relatively-prime moduli, 
𝑚𝑚1,𝑚𝑚2, … … .𝑚𝑚𝑁𝑁 , and a residue representation 
(𝑥𝑥1, 𝑥𝑥2, … . . , 𝑥𝑥𝑁𝑁) in that system of some number X, i.e. 
𝑥𝑥𝑖𝑖 = |𝑋𝑋|𝑚𝑚𝑖𝑖 , that number and its residues are related by the 
Chinese Remainder Theorem that is given as; 

|𝑋𝑋|𝑀𝑀 = |�𝑥𝑥𝑖𝑖|𝑀𝑀𝑖𝑖
−1|𝑚𝑚𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑀𝑀𝑖𝑖|𝑀𝑀 … … … … . . (1) 

Where M is the product of the mi 
1

iM − are the 

multiplicative inverse of iM  with respect to mi i
i

MM
m

=

[8], [9]. In other words, given the moduli set, and a number, 
𝑋𝑋 represented in its residue form, 𝑋𝑋 can be computed by 
equation 1. The main problem of the CRT is the modulo 
operation of 𝑀𝑀 which introduces more overhead to the 
reverse conversion process in terms of speed and 
complexity. 

IV. MIXED RADIX CONVERSION (MRC)

The Mixed Radix Conversion (MRC) is an algorithm use to 
convert any number 𝑋𝑋 in RNS representation to its 
binary/decimal equivalent. MRC is given as follows: 
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𝑋𝑋
= 𝑑𝑑1 + 𝑑𝑑2𝑚𝑚1 + 𝑑𝑑3𝑚𝑚1𝑚𝑚2 + ⋯
+ 𝑑𝑑𝑛𝑛𝑚𝑚1𝑚𝑚2𝑚𝑚3 …𝑚𝑚𝑛𝑛−1 … … … … … … … … … … … … … . (2) 

 
  Where 𝑑𝑑𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛 are the Mixed Radix Digits 
(MRDs) and computed as follows: 
 

𝑑𝑑1 = 𝑥𝑥1 
𝑑𝑑2 = �(𝑥𝑥2 − 𝑑𝑑1)|𝑚𝑚1

−1|𝑚𝑚2�𝑚𝑚2
 

𝑑𝑑3 = ��(𝑥𝑥3 − 𝑑𝑑1)|𝑚𝑚1
−1|𝑚𝑚3 − 𝑑𝑑2� |𝑚𝑚2

−1|𝑚𝑚3�𝑚𝑚3
 

⋮ 
    𝑑𝑑𝑛𝑛 = ��… �(𝑥𝑥3 − 𝑑𝑑1)|𝑚𝑚1

−1|𝑚𝑚𝑛𝑛 − 𝑑𝑑2� |𝑚𝑚2
−1|𝑚𝑚𝑛𝑛 −⋯−

𝑑𝑑𝑛𝑛−1� |𝑚𝑚𝑛𝑛−1
−1 |𝑚𝑚𝑛𝑛 �𝑚𝑚𝑛𝑛

… … … … … …(2.3) [10]. 

 
That is, 𝑋𝑋 in the interval  [0,𝑀𝑀] can be uniquely 
represented. The MRC is serial and an error in the 
computation of  𝑑𝑑1 will lead to an error in the 
subsequent 𝑑𝑑𝑖𝑖 . 
 

V. THE NEW ALGORITHMS 
 
The proposed new algorithm is presented below is very 
simple and have fewer multiplicative inverse operations 
than there are in the CRT and MRC. 
 
A. Algorithm for Two Moduli Set 
 
Given a two moduli set 𝑚𝑚 = {𝑚𝑚1,𝑚𝑚2} and residues 𝑟𝑟 =
(𝑟𝑟1, 𝑟𝑟2), 𝑚𝑚 and 𝑟𝑟 can be written in a form: 
 

𝑋𝑋 ≡ 𝑟𝑟1 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚1 … … … … … … 1 
𝑋𝑋 ≡ 𝑟𝑟2 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2 … … … … … … 2 

 
Equation 1 can also be written as  
 

𝑋𝑋 = 𝑚𝑚1𝑝𝑝 + 𝑟𝑟1  … … … … … … 3 
 

Now equation 3 is the general form of decimal equivalent 
that satisfies equation 2 such that: 
 

|𝑚𝑚1𝑝𝑝 +  𝑟𝑟1|𝑚𝑚2 =  𝑟𝑟2 
Where p = [0,𝑟𝑟2]. 
 
 

Generally, the decimal equivalent for any two moduli set 
can be computed as follows: 

X =  
|𝑚𝑚1𝑝𝑝 +  𝑟𝑟1|𝑚𝑚2 =  𝑟𝑟2 

Where, 
p = [0,𝑟𝑟2] that is, any value from the range that satisfies X. 

 
Therefore the value that satisfies X at a chosen 
 

 
 

 
B. Numerical Illustration with Two Moduli Set {2n + 1, 2n} 

 
Example 1: Given the moduli set m = {5, 4} and residues r= 
(2, 3) 
 
Example 2: Given the moduli set m = {9, 8} and residues r= 
(7, 7) 
 
Solution: 
 
With two moduli set, we have  
 
Generally, the decimal equivalent for any two moduli set 
can be computed as follows: 
X = |m_1 p + r_1 |_(m_2 )= r_2 
 
Where, 
p = [0,r_2] that is, any value from the range that satisfies X. 
Therefore the value that satisfies X at a chosen number from 
p, is its decimal equivalent. 
 
From example 1,  𝑚𝑚1 = 5,𝑚𝑚2 = 4,𝑟𝑟1 = 2,𝑟𝑟2 = 3 

X =  
|5𝑝𝑝 +  2|4 =  3 

p= [0, 1,…3] 
When p=1 

|5(1)  +  2|4 =  3 is satisfied. Since |7|4 =  3 satisfied X at 
the value of 7 (5(1)  +  2), we stop and take that value as its 

decimal equivalent.  
 

Therefore the decimal equivalent for example 1 is 7. 
 
From example 2, 𝑚𝑚1 = 9,𝑚𝑚2 = 8,𝑟𝑟1 = 7,𝑟𝑟2 = 7 
 

X =  
|9𝑝𝑝 +  7|8 =  7 

p=[0, 1,…7] 
When p=0 

|9(0)  +  7|8 =  7is satisfied. Since |7|8 =  7 satisfied X at 
the value 7 (9(0)  +  7), we stop and take that value as is 

decimal equivalent. 
 

Therefore the decimal equivalent for example 2 is 7. 
 
C.  Algorithm for Three Moduli Set 

 
Given a moduli set 𝑚𝑚 = {𝑚𝑚1,𝑚𝑚2,𝑚𝑚3} and residues 𝑟𝑟 =
(𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3), 𝑚𝑚 and 𝑟𝑟 can be written in a form: 
 

𝑋𝑋 ≡ 𝑟𝑟1 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚1 … … … … … … 1 
𝑋𝑋 ≡ 𝑟𝑟2 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2 … … … … … … 2 
𝑋𝑋 ≡ 𝑟𝑟3 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚3 … … … … … … 3 

 
Equation 1 can also be written as  
 

𝑋𝑋 = 𝑚𝑚1𝑘𝑘 + 𝑟𝑟1  … … … … … … 4 
 

Equation 4 must satisfy equation 2 such that 
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𝑚𝑚1𝑘𝑘 + 𝑟𝑟1 ≡ 𝑟𝑟2𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2 
𝑚𝑚1𝑘𝑘 ≡ (𝑟𝑟2 − 𝑟𝑟1)𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2 

𝑘𝑘 ≡ (𝑟𝑟2 − 𝑟𝑟1).𝑚𝑚1
−1 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2 

𝑘𝑘 = 𝑚𝑚2𝑡𝑡 + |(𝑟𝑟2 − 𝑟𝑟1).𝑚𝑚1
−1|𝑚𝑚2  

 
Putting k into equation 4, we have  
 

𝑋𝑋 = 𝑚𝑚1(𝑚𝑚2𝑡𝑡 + |(𝑟𝑟2 −  𝑟𝑟1)𝑚𝑚1
−1|𝑚𝑚2 ) + 𝑟𝑟1 

X = 𝑚𝑚1𝑚𝑚2𝑡𝑡 + �𝑚𝑚1|(𝑟𝑟2 −  𝑟𝑟1)𝑚𝑚1
−1|𝑚𝑚2 + 𝑟𝑟1�… … … … … … 5 

 
Now equation 5 is the general form of decimal equivalent 
that satisfies equation 3 such that: 
 

�𝑚𝑚1𝑚𝑚2𝑡𝑡 + �𝑚𝑚1|(𝑟𝑟2 −  𝑟𝑟1)𝑚𝑚1
−1|𝑚𝑚2 + 𝑟𝑟1��𝑚𝑚3

=  𝑟𝑟3 
Where t = [0,𝑟𝑟3] 
 
Generally, the decimal equivalent for any three moduli set 

can be computed as follows: 
X =  

|𝑚𝑚1𝑚𝑚2𝑝𝑝 + (𝑠𝑠)|𝑚𝑚3 =  𝑟𝑟3 
Where, 

s = �𝑚𝑚1|(𝑟𝑟2 −  𝑟𝑟1)𝑚𝑚1
−1|𝑚𝑚2 + 𝑟𝑟1� 

p = [0,𝑟𝑟3] that is, any value from the range that satisfies X 
after computing the value of s. 

Therefore the value that satisfies X at a chosen number from 
p, is its decimal equivalent. 

 
D. Numerical Illustration with Three Moduli Set {2n + 1, 2n, 
2n - 1} 
 
Example 3: Given the moduli set m = {5, 4, 3} and residues 
r= (0, 3, 0) 
 
Example 4: Given the moduli set m = {9, 8, 7} and residues 
r= (7, 0, 2) 
 
Solution: 
 
With three moduli set, we have  
 
Generally, the decimal equivalent for any three moduli set 

can be computed as follows: 
X =  

|𝑚𝑚1𝑚𝑚2𝑝𝑝 + (𝑠𝑠)|𝑚𝑚3 =  𝑟𝑟3 
Where, 

s = �𝑚𝑚1|(𝑟𝑟2 −  𝑟𝑟1)𝑚𝑚1
−1|𝑚𝑚2 + 𝑟𝑟1� 

p = [0,𝑟𝑟3] that is, any value from the range that satisfies X 
after computing the value of s. 

Therefore the value that satisfies X at a chosen number from 
p, is its decimal equivalent. 

 
From example 3,  𝑚𝑚1 = 5,𝑚𝑚2 = 4,𝑚𝑚3 = 3, 𝑟𝑟1 = 0,𝑟𝑟2 =
3,𝑟𝑟3 = 0 

X =  
|5.4.𝑝𝑝 + (𝑠𝑠)|3 =  0 

s = (5|(3 −  0)5−1|4 +  0) 

s = (5|(3). 1|4 +  0) 
s = 15 
X =  

|5.4.𝑝𝑝 + (15)|3 =  0 
X =  

|20𝑝𝑝 +  15|3 =  0 
p= [0, 1, 2] 
When p=0 

|20(0)  +  15|3 =  0is satisfied. Since |15|3 =  0 satisfied 
X at the value of 15 (20(0)  +  15), we stop and take that 

value as its decimal equivalent.  
 

Therefore the decimal equivalent for example 3 is 15. 
 
From example 4,  𝑚𝑚1 = 9,𝑚𝑚2 = 8,𝑚𝑚3 = 7, 𝑟𝑟1 = 7,𝑟𝑟2 =
0,𝑟𝑟3 = 2 

X =  
|9.8.𝑝𝑝 + (𝑠𝑠)|7 =  2 

s = (9|(0 −  7)9−1|8 +  7) 
s = (9|(−7). 1|4 +  7) 

s = 16 
X =  

|9.8.𝑝𝑝 + (16)|7 =  2 
X =  

|72𝑝𝑝 +  16|7 =  2 
p= [0, 1,2,…6] 

When p=0 
 

|72(0)  +  16|7 =  2is satisfied. Since |16|7 =  2 satisfied 
X at the value of 16 (72(0)  +  16), we stop and take that 

value as its decimal equivalent.  
 

Therefore the decimal equivalent for example 4 is 16. 
 

VI. CONCLUSION 
 

New algorithm for reverse conversion in RNS for two 
moduli set and three moduli set have been proposed. These 
algorithms are very simple and straight forward with fewer 
number multiplicative inverses operations than there are in 
the traditional CRT and MRC algorithms. 
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