
Asian Journal of Computer Science and Technology

ISSN: 2249-0701 (P) Vol.8 No.3, 2019, pp.19-22
 © The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ajcst-2019.8.3.2735

Enhancement of Security for Cloud Based IoT Using XHE Scheme
K. Sailaja1 and M. Rohitha2

1
Associate Professor, Department of Master of Computer Applications,

Mother Teresa Institute of Computer Applications, Andhra Pradesh, India
2
PG Student, Department of Electronics and Communication Engineering,

Sri Padmavati Mahila Visva Vidyalayam, Andhra Pradesh, India
E-Mail: sailaja.k20@gmail.com, rohitha9370@gmail.com

Abstract - Security is a million dollar issue for all computer
systems. Every week there is news of another major breakin to
a commercial or government system. Also it is well known that
many governments are actively engaged in cyber-warfare,
trying to break into the systems of other governments and
other groups. The Internet of Things is increasingly changing
into an omnipresent computing service, requiring vast volumes
of knowledge storage and process. Unfortunately, due to the
unique characteristics of resource constraints, self-
organization and short range communication in IoT, it always
resorts to the cloud for outsourced storage and computation.
Security is one of the major challenges faced by cloud based
IoT. The standard file protection technique relies on password-
based encryption schemes and they are vulnerable to brute-
force attacks. The reason is that, for a wrongly guessed key,
the decryption process yields an invalid-looking plaintext
message, confirming the invalidity of the key, while for the
correct key it outputs a valid-looking plaintext message,
confirming the correctness of the guessed key. Honey
encryption helps to minimise this vulnerability. Hence, this
paper proposed an extended Honey Encryption (XHE) scheme
for enhancing the security of the cloud based IoT.
Keywords: IoT, Cloud, Password Based Encryption, Extended
Honey Encryption, Brute-Force Attacks

I. INTRODUCTION

The future Internet will involve large numbers of objects

that use standard communications architectures to provide

services to end users. It is envisioned that tens of billions of

such devices will be interconnected in a few years. This will

provide new interactions between the physical world and

computing, digital content, analysis, applications, and

services. This resulting networking paradigm is being called

the Internet of Things (IoT). This will provide

unprecedented opportunities for users, manufacturers, and

service providers in a wide variety of sectors. Areas that

will benefit from IoT data collection, analysis, and

automation capabilities include health and fitness,

healthcare, home monitoring and automation, energy

savings and smart grid, farming, transportation,

environmental monitoring, inventory and product

management, security, surveillance, education, and many

others.

IoT is perhaps the most complex and undeveloped area of

network security. Since IoT is carrying more sensitive

information across the Internet, there is a need for better

security. So by implementing cryptographic algorithms, the

user can communicate with IOT devices in safe and secured

manner [1]. Traditionally, the data encryption algorithms

are considered as ―computationally secure‖, if the best

known method of breaking the algorithms require an

unreasonably large amount of computer processing time [2].

However, with the advancement of computing processors,

parallelism techniques and distributed algorithms, existing

IoT security that relies on the conventional password-based

data encryption algorithms (e.g. Advanced Encryption

Standard (AES) [3,4], RSA [5,6], etc.) are constantly at risk

of being challenged and broken [7].

In computer security, honey commonly denotes a false

resource designed to lure or deceive an attacker. Honeypots,

for example, are servers designed to attract attackers for

observation and study. Honey Encryption creates a cipher

text that, when decrypted with an incorrect key or password,

yields a valid-looking but bogus message, so that attackers

can‗t tell when decryption has been Successful [8]. By

implementing our improvised architecture, we can achieve

more security compared to simple honey encryption. This

paper extends the honey encryption scheme to enhance the

security of the IoT, so called as extended Honey Encryption

(XHE) scheme.

II. LITERATURE SURVEY

To date, various methods have been proposed to extend the

HE scheme to enhance the IoT security. In this proposal, the

standard HE scheme is unified with a structural code

system. This proposal generates plausible false text relative

to the plaintext. However, the anomaly between the

plaintext and therefore the false text is way. The attacker

may use this vulnerability to recover the difference between

the false text and plaintext and acquire the target message.

Chatterjee et al., [10] proposed a Natural Language Encoder

called the NoCrack. The proposal is specifically for

protecting Password Vaults/Manager. The intuition is to

come up with pretend however realistic-looking vault to the

aggressor within the face of a brute-force attack. The

attacker is not able to tell if it is the original or fake vault he

has acquired. The system also forces the attacker to go

online where his activities can be traced and prohibited.

This proposal works reasonably well for password-related

settings but cannot be extended to support large human-text.

 19AJCST Vol.8 No.3 July-December 2019

(Received 18 July 2019; Revised 10 August 2019; Accepted 2 September 2019; Available online 12 September 2019)

Huang et al., [11] expanded the standard Honey encryption

scheme to support encoding of genomic data. This proposal

suggested techniques for securing genetic materials and also

protecting the genomes from mauling by an attacker with an

unbounded time. This proposal uses statistical tools to

increase the message space, allowing more instances of

online guessing of the original vault. However, this

technique does not scale well as it cannot be extended to

support the human generated message [12]. Pointed out how

message recovery setting in the standard HE scheme is

lacking. They suggested ways of strengthening the scheme

to conceal partial information of the target message while

still providing security and protecting the acquired message

from mauling. In this proposal, an adversary eavesdropping

on their conversation at another end of the channel is

supplied with valid-looking but fake chat message when he

tries his incorrect keys. Yoon et al.,[14], proposed the visual

HE which employs an adaptive DTE in a Bayesian

framework. This proposal introduced a novel method of

using the Bayesian framework to secure images and videos

to produce fake but normal-looking videos to an adversary

during transmission of images/videos. Tyagi et al., [15]

implemented the standard HE scheme on short messages

and PINS. [18] Proposed techniques of solving typo

problems in the honey encryption scheme. From our studies,

all methods proposed by [9-16] worked relatively well for

securing passwords.

III. HONEY ENCRYPTION SCHEME

The two main factors in this construct are the

implementation of the message space where all the probable

values of passwords are placed. The second factor is the

Distribution transforming Encoder that encodes or decodes

the message space using the specified functions. The

probable values are mapped to a seed; using a specified

value of n. The seeds are distributed according to the

probability of the occurrence of the password. Like for more

common passwords, the seeds are given a higher probability

as compared to the unlikely/uncommon passwords.

A. Message Space: As defined in the paper by JR, the class

Message Space Probability Functions contains a set of

functions that might be used to apply Encryption. They are

defined as follows:

1. Cumulative_Distr (Message): gives cumulative

probability defining the point where the message lies in

ordered messages.

2. Probability_Distr(Message): gives probability of the

message that is input.

3. Next_Message(Message): gives the next message in the

message space

4. Get_Inverse_Cumul_Distr_Samples(): returns list of

pre-calculated sampling of cumulative distribution

values of messages.

B. Distribution Transforming Encoder: The DTE is

constructed keeping the message distribution in

consideration. The Encoding yields a ―seed‖ value

distributed uniformly. The seeds are mostly taken to be

binary strings. The Encoder needs to have a decoder as well

which when provided with the seed returns the text

message. Encoding is a two-step process called DTE-then-

encrypt.

1. The DTE is applied to Message to obtain seed.

2. The obtained seed is encrypted using cipherkey that

will give HE Cipher-text.

a. Loop Hole: The security of this Encryption relies on the

probability that is defined by the Encrypting Party. If

by any means this probability is not calculated

properly, the method fails. So in cases when the format

or distribution of plain text is unknown or there is a

large space of plain-texts, HE can‘t be applied. Now

keeping these factors in mind, the predictability is

judged. So before applying this method, the plain-text

needs to be monitored and then it needs to be mapped

in a large space where all the outputs look plausible and

match the likelihood of legitimacy.

b. Target Area: The security provided by this encryption

is best applicable for places having low-entropy. The

developers, JR, proposed this scheme in the context of

passwords. They may include generic alphabets, credit

cards or plain text messages.

IV. EVALUATION

The platform for evaluating our honey encryption system is

the Toshiba Portege-M800 laptop. The processor is Intel

Core 2 Duo 2.0 Hz. The memory has a 3 GB RAM. The

operating system is Ubuntu Kylin 16.04. The goal of

experiments is to study the time taken to encrypt and

decrypt a message. In order to make it easy to increase the

size of the message space for multiple times, we choose the

password message space for evaluation and increase the size

from 10
6
 to 10

8
.

A. Time to Encrypt a Message

For encryption in a large message space, DTE should read

the message space file line by line, calculate the PDF and

CDF, determine the seed range, and randomly select a seed

from the range. Finally, the chosen seed is XORed with the

key to obtain the ciphertext. We extend the message space

size from 10
6
 to 10

8
 and conduct an evaluation. The time to

encrypt a message is measured and displayed in Fig.1.

The x-axis presents the message location in the message

space. For example, 0.25 stands for the message that is

located at 25% of the message space. The y-axis represents

the time taken to encrypt a message. It can be observed

from the figure that the encryption time increases as the

location of the message moves deeper. This is because the

encryption algorithm reads the message space line by line

until it finds the message to get the probabilities. The larger

the message space, the more time it needs for encryption

because the most time-consuming work in this encryption is

reading and processing the message space. For the message

 20 AJCST Vol.8 No.3 July-December 2019

Enhancement of Security for Cloud Based IoT Using XHE Scheme

https://www.hindawi.com/journals/scn/2017/6760532/fig3/#a

space 10
6
 or 10

8
 that contains or messages, the time is

reasonable, but for a message space of 10
8
 messages, the

maximum time to encrypt a message can be as high as 70 s,

which is too high.

B. Time to Decrypt a Message

During the decryption process, DTE first XORs the key

with the ciphertext and obtains the seed. Then it determines

the location of the seed in the seed space. Using the location

information, it looks up the inverse table and gets the

corresponding plaintext message. We measure the time to

decrypt a message in three message spaces, ranging

from to, and display these statistics in Fig.2. The x-axis

stands for the location of a plaintext message in the inverse

table, and the y-axis represents the time to decrypt the

message. As shown from the fig.2, the decryption time

increases as the plaintext message location in the inverse

table goes deeper. This is because the decryption algorithm

reads line by line the inverse table file until it finds the

plaintext message. The larger the inverse table, the slower

the decryption process because the most time-consuming

part in this decryption is to process the inverse table file.

When the inverse table size is10
6
, the time to decrypt a

message is acceptable, but when the inverse table size is

10
8
, the time can reach 160 s. Comparing Fig.1 and Fig. 2 it

can be seen that the time to decrypt and encrypt a message

is different because the message space file only contains a

message in one line, but the inverse table file contains a

message and its cumulative probability for each line. Thus

processing the latter takes more time.

Fig. 1 encryption

Fig. 2 Decryption

V. ENHANCEMENT

For a large message space, the decryption algorithm needs

to read the inverse table file line by line and find the correct

plaintext message using the calculated cumulative

probability. For a small message space, we can read the

whole inverse table into the memory and use the binary

search method to find the corresponding plaintext message

in the decryption process.

For a large message space, the encryption algorithm needs

to read the message space file and determine the message‘s

PDF and CDF. But if the message space is incrementally

sorted like the password message space, the value of the

message, has a relationship with its location, in the message

space; that is, Also, the cumulative probability is related to

the message location in the message space; that is,

A=V+1.CDF = A/N, where is the number of messages in

the message space. Therefore, instead of searching the

message space file for CDF, we can calculate the CDF. It

should be noted that not all message spaces have such

features. Taking the identification number, for example, the

CDF of a message is not related to the value of the message

itself. We improve the encryption and decryption algorithm

and evaluate their performance.

Fig. 3 Encryption enhanced

Fig. 4 Decryption enhanced

 21AJCST Vol.8 No.3 July-December 2019

K. Sailaja and M. Rohitha

https://www.hindawi.com/journals/scn/2017/6760532/fig3/#b
https://www.hindawi.com/journals/scn/2017/6760532/fig3/#a
https://www.hindawi.com/journals/scn/2017/6760532/fig3/#b

Fig. 3 shows the encryption time of the enhanced encryption

algorithm. For 10
6
 and 10

8
 and message spaces, no matter

where the message is located, the encryption time is only

around 136 microseconds. The lines for both 10
6
 and

10
8
 and message spaces overlap. This means the encryption

time is independent of the message space size.

Fig.4 shows the time taken for the enhanced decryption

algorithm. No matter where the message is located in the

message space, the decryption time is around 45

microseconds. The lines for both 10
6
 and 10

8
 and message

spaces overlap, which means the decryption time is

independent of the message space size. This may be because

the difference of the binary search algorithm in the 10
6
 and

10
8
 and message spaces is not significant. We tried

the 10
8
 message spaces to verify this case, but the system

fails due to memory error because the available memory is

too small to hold the inverse table file

containing 10
8
 messages.

VI. CONCLUSION

Security is one of the major challenges faced by IoT

industry. In future most of the standard encryption

algorithms that exist today can be broken within seconds.

Hence by implementing this type of encryption technique,

both security and integrity is preserved. While the existing

file protection relies on password-based encryption, which

is vulnerable to password guessing attack such as brute-

force, dictionary or rainbow table attack. The recent

development of honey encryption offers many password

based security schemes resilience to brute force offline

attacks by yielding plausible plaintexts under decryption by

invalid keys. This paper proposed an extended Honey

Encryption (XHE) scheme for securing the IoT. The

proposed XHE scheme provides an additional protection

layer to existingencrypted file. When the attacker attempts

to access the encrypted data with his guessing password,

instead of rejecting their data access as conventional file

encryption scheme, the extended HE algorithm generates an

indistinguishable bogus file that are closely related to the

original file. It is noticeable that the message space of the

proposed scheme is pre-fixed and the complexity and the

size of inverse sampling tables is growing exponentially

with the increase of the file names and its extension sizes.

In future, several aspects of this work can be

furtherexplored, such as working with a flexible message

space and further extends into folders protection. Besides

that, whether the proposed XHE scheme can be further

adapted to work with the recent advancement of

cryptography algorithm such as Homomorphic Encryption

for supporting the computation on encrypted data, as well as

Attribute-Based Encryption (ABE) to fine grained control

access on encrypted data are another interesting topic to be

explored.

REFERENCES

[1] Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei
Palade, and SiobhánClarke, ―IEEE, Middleware for Internet of

Things‖, IEEE Internet of Things Journal, Vol. 3, No. 1, pp. 70 - 95,

2016.
[2] W. Diffie and M.E. Hellman, ―New Directions in Crytography‖,

IEEE Transactions on Information Theory, Vol. 22, No. 6, pp. 644 -

654,IEEE Press, New Jersey, 1976.
[3] G. Irazoqui, M.S. Inci, T. Eisenbarth and B. Sunar, ―Wait a Minute!

A Fast, Cross-VM Attacks on AES‖, LNCS, Springer, Switzerland,

Vol. 8688, pp. 299-319, 2014.
[4] Y. Wei, J. Lu and Y. Hu, ―Meet-in-the-Middle Attack on 8 Rounds of

the AES Block Cipher under 192 Key Bits. LNCS‖, Springer,

Heidelberg, Vol. 6672, pp. 222-232, 2011.
[5] A. Nitaj, M.R.K. Ariffin, D.I. Nassar, H.M. Bahig, ―New Attacks on

the RSA Cryptosystem. LNCS, Progress in Cryptology –

AFRICACRYPT‖, LNCS, Springer, Swtizerland, Vol. 8469, pp. 178-
198, 2014.

[6] Y. Lu, L. Peng, S. Sarkar, ―Cryptanalysis of an RSA variant with

Moduli N = prq‖, In: 9thInternational Workshop on Coding and

Cryptography 2015 WCC2015, Apr 2015, Paris, France. 2016.

[7] S.F. Tan and A. Samsudin, ―Enhanced Security for Public Cloud

Storage with Honey Encryption”, Advanced Science Letters.
Accepted Manuscript.

[8] A. Juels and T. Ristenpart, ―Honey Encryption: Security beyond the
Brute-Force Bound,‖ Advances in Crypto logy—Euro crypt 2014‖,

LNCS 8441, Springer, pp. 293–310, 2014

[9] H. Jo and J. Won, ―A new countermeasure against brute-force attacks
that use high-performance computers for big data analysis‖,Hindawi

Publishing Corporation, International Journal of Distributed Sensor

Networks, pp. 7, 2015. [Online] Available at: http://dx.doi.org/
10.1155/2015/406915.

[10] R. Chatterjee, J. Bonneau., A. Juels and T. Ristenpart, ―Cracking

Resistant Password Vaults using Natural Language Encoders,‖
Proceedings – IEEE Symposium on Security and Privacy, No.

7163043, pp. 481-498, July 2015.

[11] Z. Huang, E. Ayday, J. Fellay, J. Hubaux and A. Juels, ―Genoguard:
Protecting genomic data against brute-force attacks,‖ IEEE

Symposium on Security and Privacy, pp. 447-462, 2015. DOI

10.1109/SP.2015.34.
[12] J. Jaeger, T. Ristenpart and Q. Tang, ―Honey encryption beyond

message recovery security,‖ International Association for

Cryptologic Research, Fischlin and J.-S.Coron (Eds.): EUROCRYPT
2016, Part I, LNCS 9665, pp. 758–788, 2016. DOI: 10.1007/978-3-

662-49890-3 29.

[13] J. Kim and J. Won, ―Honey chatting: A novel instant messaging
system robust to eavesdropping over communication,‖ IEEE In

Acoustics, Speech and Signal Processing (ICASSP), pp. 2184-2188,

2016.
[14] J.W. Yoon, H.S. Kim, H.J. Jo, H.L. Lee, and K.S. Lee, ―Visual honey

encryption: Application to steganography,‖ in Proceedings of the 3rd

ACM Workshop on Information Hiding and Multimedia Security,
New York, NY, USA, 2015, IH & MM Sec ’15, pp. 65–74, ACM.

[15] N. Tyagi, J. Wang, K. Wen and D.Zuo, ―Honey Encryption

Applications. 6.857 Computer and Network Security‖, Massachusetts
Institute of Technology. [Online] Available at: http://www.mit.edu/~

ntyagi/papers/honey-encryption-cc.pdf, 2015

[16] M. Golla, B. Beuscher and M. Durmuth, ―On the security of cracking
resistant password vaults,‖ Proceedings of the ACM Conference on

Computer and Communications Security, Vol. 24, No. 28, pp. 1230-

1241, Oct. 2016.
[17] R. Chatterjee, A. Athalye, D. Akhawe, A. Juels, and T. Ristenpart,

―Password typos and how to correct them securely,‖ In Security and

Privacy (SP), 2016 IEEE Symposium, pp. 799–818, 2016.
[18] H. Choi, H. Nam and J. Hur, ―Password Typos Resilience in Honey

Encryption,‖ IEEE Symposium. The 31st International Conference on

Information Networking (ICOIN 2017), pp. 593-597, 2017.

 22 AJCST Vol.8 No.3 July-December 2019

Enhancement of Security for Cloud Based IoT Using XHE Scheme

https://www.hindawi.com/journals/scn/2017/6760532/fig4/#a

