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Abstract - Electromyography has been used for many years in 
regulating paralyzed limb. Captured and Processed EMG is an 
indication of human movements. EMG signal (called as Mayo 
signal) will be recorded by surface electrodes and needle 
electrodes. In this work, the combined time and frequency 
analysis has been carried out to extract the required features 
using Wavelet Transform tools. Further the classification has 
been carried by 2 different Machine Learning based 
algorithms, Random Forest (RF), and Multilayer Perceptron 
(MLP). The standard data set has been used for the purpose. 
The classifier model has used 80% data as a training set and 
the remaining 20% of data as the test set. The result shows 
that Random Forest and MLP perform better with an 
accuracy of 98 %. This classification model can serves as a 
promising candidate for analysis of muscular paralysis. 
Keywords: Electromyography, Wavelet Transform, Random 
Forest, Multilayer Perceptron, Mayosignal 

I. INTRODUCTION

Electromyography (emg) alternatively called as Myoelectric 
activity is the study of muscular Abnormalities such as 
muscular dystrophy, Inflammation of muscle, peripheral 
nerve damages and muscular paralysis.  With the advances 
in technologies a more accurate emg signal can be captured, 
with the usage of proper interfaces. Emg signal is measure 
of electrical currents generated due to muscle fibers 
dynamics and can be captured at the surface of the skin. 
Emg signal is a complicated signal controlled by the 
complex nervous system, and noise is acquired while 
travelling through different tissues [1]. Emg could be 
captured by two popular mechanisms either through 
invasive or non invasive. [2] emg provides valuable 
information about muscular contraction. 

The anatomical and physiological characteristics of the 
muscles make the EMG signal properties complicated. The 
EMG signal analysis finds its application in various fields of 
study such as rehabilitation, ergonomics, and sport science. 
Feature extraction is very essential mechanism used to 
extract the useful information from the captured EMG 
signal. The raw EMG signal has inherently a Time domain 
representation, but Signal processing application demands 
additional information, which is missing in the time domain 
representation, hence EMG signals are generally handled in 

frequency domain rather than time domain. Further, features 
are extracted from the captured EMG for predicting the 
muscular contraction. The recorded EMG pattern with 
invasive type approach has peak to peak amplitude 0 to 10 
milli volts and frequency ranges from 0 to 500Hz shown in 
Fig. 1 depicts the pattern for three classes: normal, ALS, 
myopathy. The EMG pattern indicates the specific 
neurological disorders; Amyotrophic lateral sclerosis (ALS) 
leads to death of motor neurons; Myopathy is a muscular 
disorder leads to muscular weakness. To get better 
performance of the classification form recorded EMG signal 
which is a non-stationary signal an appropriate feature 
extraction scheme should be used. 

Fig. 1 Patterns of normal, ALS and myopathy 

The objective of the proposed model is to collect EMG data 
of normal, and paralyzed subjects from 
experimentation/standard database for various 
musculoskeletal activities, such as sitting, standing, and 
gait. Also, analyze the EMG signals in normal, and 
paralyzed subjects by time domain, frequency domain and 
time-frequency domain techniques and extraction of 
important features. And to develop classification model 
based on the features extracted from EMG to classify the 
data / signal into normal and paralyzed. 
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The rest of the paper is organized as follows: Section 2 
explained the literature of existing models, section 3 
describes the proposed model, section 4 deals with result 
and discussion, section 5 concludes the work. 

 
II. RELATED WORK 

 
Mahaphonchaikul et al., [1] developed a multi-channel 
electromyogram system using programmable system on 
chip microcontroller to obtain the surface of EMG signal. 
Various levels of Daubechies Wavelet family were adopted 
to extract and analyse the EMG signal. The response of root 
means square feature extraction method performed better in 
its accuracy. Farzaneh et al., [2] considered Wavelet 
Transform to extract Surface EMG (SEMG) features due to 
its characteristics such as consistent of EMG as a 
nonstationary signal. In addition, RES index and scatter plot 
are adopted to check the efficiency. The SEMG features 
using Daubechies family (db2) yielded best response. 
Besides prosthetic device control and neuromuscular 
disease identification, electromyography (EMG) signals can 
also be applied in the field of human computer interaction 
(HCI) system. This article represents the classification of 
(EMG) signal for the detection of different predefined hand 
motions (left, right, up, and down) using artificial neural 
network (ANN). Elamvazuthi et al., [3] investigated the 
multi-level Daubechies wavelet reconstruction parameters 
processed using MAV technique. RES index statistical 
measurement was considered to evaluate the class 
reparability of the features.  
 
Ibrahimy et al., [4] used neural network having back 
propagation type, trained by Levenberg-Marquardt training 
algorithm. The EMG signals have been pre-processed for 
extracting some features. The frequency-based features are 
extracted and normalized. A chih Tsai et al., [5] extracted 
STFT feature to deter-mine multichannel EMG signals. The 
performance of the novel feature and conventional features 
for motion pattern recognition using EMG signals. 
Experiments were made by using an exoskeleton robotic 
arm generating EMG signals of designated motion patterns. 
Abdulhamit Subasi et al., [6] presented bagging ensemble 
classifier for automated classification of EMG signals. It is 
assessed to diagnosis of neuromuscular disorders using 
EMG signals. DWT is used to extract the significant 
features followed by obtaining the statistical values of 
DWT. Finally, feature set is used as an input to a Bagging 
ensemble classifier for the diagnosis of neuromuscular 
disorders. Anju Krishna V and Paul Thomas [7] developed 
disease classification model of EMG signal where spectral 
features extracted from MUAP. The MUAPs are extracted 
from the EMG signal. Then, DWT and direct methods are 
used to obtain spectral features. Finally, KNN classifier is 
used to classify the features. Clinical dataset and samples 
are used to evaluate the model. Ailton and Júnior [8] 
developed method based on a bank of matched filters for the 
decomposition of EMG signals which includes a bank of 
matched filters, a peak detector, a motor unit classifier and 
an overlapping resolution module. The experimentation was 

carried using real EMG data.  Xiaomei Ren et al., [9] used 
MUAPs and assign single MUAP segments to their 
corresponding motor units. The waveforms generated by 
MUAP are found to be superimposed are then resolved 
using a peel-off approach. The framework was evaluated 
using synthetic EMG signals and real recordings generated 
from healthy and stroke participants. P. Geethanjali [10] 
explained PCA based feature reduction on pattern 
recognition for different classifier to obtain statistical 
features as AR coefficients. The features extracted were 
tested using kNN classifier to classify the set of features 
obtained. 
 
R. Begg et al., [11] explained the entire procedure for 
diagnostic systems initializes to pre-process the raw EMG 
signal and extract features. In turn, it helps in diagnosis of 
neuromuscular disorders. Features may be in time and 
frequency domain. A. Subasi [12] described statistical 
features of DWT have been used to characterize the EMG 
interference pattern. Based on that feature, it provides 
highly significant information between healthy, myopathic, 
and neuropathic subjects. The extracted features are then be 
used as input data for classifiers such as NNs and SVMs, to 
detect neuromuscular disorders. Hassoun et al., [13] 
developed the NNERVE algorithm to computerize the 
extraction of individual EMG. Schizas et al., [14] marked 
out ANN to classify the action potentials of a large group of 
muscles. Schizas et al., [15] used model and compared 
classifiers such as K-means, MLP-NN, SOMs. The K-
means algorithm was not suitable, but the combination of 
ANN and genetic-based models produced promising results.  
 
Pattichis et al., [16] considered ANN and MUAP signals 
collected from the biceps brachii muscle. THE MLP 
network along with K-means clustering and Kohonen’s 
SOM are used in the work. Pattichis and Elia [17] extended 
SOM, learning vector quantization (LVQ), and statistical 
methods for explaining the model of EMG and classifying 
the bio signals. Pattichis [18] used WT that provides a linear 
time-scale representation for describing MUAP 
morphology. The classifiers such as BP, the RBF, and 
SOFM are used for the classification. Subasi et al., [19] 
evaluated the autoregressive model with wavelet neural 
network to classify EMG signals. Subasi and Kiymik [20] 
described the EMG decomposition system using time–
frequency and ICA. The PSO optimized SVM classifier 
combined with statistical features extracted from DWT are 
compared for different ML techniques to classify iEMG 
signals. The works contributed with the existing system 
suffers from lack of accuracy due to the traditional 
approaches for detecting the paralyzed samples. The 
proposed model based on the transform domain addresses 
the issues faced by the existing methods. 

 
III. PROPOSED MDOEL 

 
To analyze the paralysis, Myopathy conditions are 
considered. Myopathy refers to any disease that affects the 
muscle tissue. Diseases of the muscle result in weakness, 
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inflammation, tetany, spasms, and paralysis. EMG signals 
are taken from Database of clinical signals. The material 
consisted of a normal control group, a group of patients with 
myopathy. The proposed model for prediction of muscular 
Paralysis is shown in Fig. 2. 
 
A. Myopathy Dataset 
 
The control group consisted of 10 normal subjects aged 21-
37 years, 4 females and 6 males. 6 out of 10 were in very 
good physical shape, and the remaining except one were in 
general good shape. None in the control group had signs or 
history of neuromuscular disorders. The group with 
myopathy consisted of 7 patients; 2 females and 5 males 
aged 19-63 years. All 7 had clinical and 
electrophysiological signs of myopathy. 
 
B. MUAP Analysis 
 
1. The EMG signals were recorded under usual conditions 

for MUAP analysis: The recordings were made at low 
(just above threshold) voluntary and constant level of 
contraction. 

2. Visual and audio feedback was used to monitor the 
signal quality. 

3. A standard concentric needle electrode was used. 
4. The EMG signals were recorded from five places in the 

muscle at three levels of insertion (deep, medium, low). 
5. The high and low pass filters of the EMG amplifier 

were set at 2 Hz and 10 kHz. 
 

 
Fig. 2 Proposed Model 

 
The time domain analysis provides the information about 
the variation in the amplitude of EMG signal with time. But 
for most of the biomedical signals the frequency 

information is very much essential to understand the nature 
and characteristics of the signal. The frequency distribution 
of signal in spectrum will enable in understanding the 
physiological system in normal and pathological condition.   
 
C. Wavelet Transform 
 
Since time domain features and frequency domain features 
in this work gives no significant variations among 
Myopathy conditions, Wavelet transform (WT) became an 
effective tool to extract useful information from the EMG 
signal. A wide class of literatures has focused on the 
evaluation and investigation of an optimal feature extraction 
obtained from wavelet coefficients. 
 

 
 

Fig. 3 MUAP waveform 
 

 

 
Fig. 4 Wavelet Decomposition Levels (a) A1 & D1 Bands (b) A2 & D2 

Bands (c) A3 & D3 Bands (d) A4 & D4 Bands (e) A5 & D5 Bands 
 

The selection of the Daubechies mother wavelet determines 
the signal representation. The coefficients derived from 
wavelet decomposition are too long to be used as features 
for classification. In this work Wavelet decomposition is 
achieved for five levels.  
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Fig. 4 shows the Wavelet decomposition for different bands 
of frequencies. The A1 Band is Approximation Band 1 and 
D1 is Detail Band 1. Similarly, A2, A3, A4, & A5 are 
Approximation Bands and D2, D3, D4, & D5 are Detail 
Bands. The mean value, variance, root mean square, 
Kurtosis of signal and Skewness of signal features of data 
samples were extracted to carry out the work. 
 
1. Mean Value: The amplitude Mean value of the EMG for 
selected analysis interval is the most important EMG-
calculation, because it is less sensitive to duration 
differences of analysis intervals. The mean EMG value best 
describes the gross innervation input of a selected muscle 
for a given task and works best for comparison analysis. 
 
2. Variance: Variance of EMG signal (VAR) is good at 
measuring the signal power, and it can be expressed as   

VAR =
1

L − 1
�(xi)2

L

i=1

 

 
3. Root Mean Square: Root mean square (RMS) is one of 
the popular features which is useful in describing the muscle 
information. In mathematics, RMS can be calculated using 

RMS = �
1
L
�(xi)2

L

i=1

 

 
4. Kurtosis: Kurtosis refers to the statistical measure that 
describes the shape of either tail of a distribution, that is 
whether the distribution is heavy-tailed (presence of 

outliers) or light-tailed (paucity of outliers) compared to a 
normal distribution.  
 
In other words, it indicates whether the tail of distribution 
extends beyond the ±3 standard deviation of the mean or not 
 
Kurtosis = Fourth Moment / (Second Moment)2 
 
E. Skewness: Skewness is a measure of symmetry in a 
distribution.  
Skewness = (3 * (mean - median)) / standard deviation 
 
In this work, the Data of Myopathy is considered for 
experimentation. Features are extracted from the Data and 
are tabulated and represented using chart graphs in section 
4. 
 

IV. RESULTS AND DISCUSSION 
 
The Myopathy dataset is used for prediction of muscular 
paralysis using wavelet transform and Daubechies wavelet 
mother wavelet technique to carry out the work. After 
Wavelet decomposition the features are extracted, and 
results are tabulated. The RF and MLP are used for 
classification process.  
 
The features are extracted for Myopathy Data with wavelet 
decomposition using Daubechies wavelet of the order 1. 
The results are tabulated and indicated with chart graphs. 
The Average values, Maximum values, and Minimum 
values are A5, D5, D4, D3, D2, & D1 Bands are tabulated, 
and also indicated using chart graphs. 

 

Fig. 5 Features extracted for Approximation band A5 with Daubechies wavelet of the order 1 for Myopathy Data
 

 
Fig. 6 Average, Maximum, & Minimum values of features extracted for Approximation band A5 with Daubechies  

wavelet of the order 1 for Myopathy Data 
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TABLE I AVERAGE, MAXIMUM, & MINIMUM VALUES OF FEATURES EXTRACTED FOR APPROXIMATION BAND A5 WITH  
DAUBECHIES WAVELET OF THE ORDER 1 FOR MYOPATHY DATA 

 

 
Fig. 7 Features extracted for Detail band D5 with Daubechies wavelet of the order 1 for Myopathy Data 

 
TABLE II AVERAGE, MAXIMUM, & MINIMUM VALUES OF FEATURES EXTRACTED FOR DETAIL BAND D5 WITH  

DAUBECHIES WAVELET OF THE ORDER 1 FOR MYOPATHY DATA 
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Fig. 8 Average, Maximum, & Minimum values of features extracted for Detail band D5 with Daubechies wavelet of the order 1 for Myopathy Data 

 

 
Fig. 9 Features extracted for Detail band D4 with Daubechies wavelet of the order 1 for Myopathy Data 

 
TABLE III AVERAGE, MAXIMUM, & MINIMUM VALUES OF FEATURES EXTRACTED FOR DETAIL BAND D4 WITH DAUBECHIES 

WAVELET OF THE ORDER 1 FOR MYOPATHY DATA: 
Mean VAR MAV RMS WL ZC LD DASDV AAC VAV Kurtosis Skewness  
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Fig. 10 Average, Maximum, & Minimum values of features extracted for Detail band D4 with Daubechies wavelet of the order 1 for Myopathy Data 
 

 
Fig. 11 Features extracted for Detail band D3 with Daubechies wavelet of the order 1 for Myopathy Data 

 
TABLE IV AVERAGE, MAXIMUM, & MINIMUM VALUES OF FEATURES EXTRACTED FOR DETAIL BAND D3 WITH DAUBECHIES 

WAVELET OF THE ORDER 1 FOR MYOPATHY DATA 
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Fig. 12 Average, Maximum, & Minimum values of features extracted for Detail band D3 with Daubechies wavelet of the order 1 for Myopathy Data 

 

 
Fig. 13 Features extracted for Detail band D2 with Daubechies wavelet of the order 1 for Myopathy Data 

 
TABLE V AVERAGE, MAXIMUM, & MINIMUM VALUES OF FEATURES EXTRACTED FOR DETAIL BAND D2 WITH DAUBECHIES 
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Mean VAR MAV RMS WL ZC LD DASDV AAC VAV Kurtosis Skewness  
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Fig. 14 Average, Maximum, & Minimum values of features extracted for Detail band D2 with Daubechies wavelet of the order 1 for Myopathy Data: 

 

Fig. 15 Features extracted for Detail band D1 with Daubechies wavelet of the order 1 for Myopathy Data 
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Fig. 16 Average, Maximum, & Minimum values of features extracted for Detail band D1 with Daubechies wavelet of the order 1 for Myopathy Data 
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Fig. 17 Average values of features extracted for A5, D5, D4, D3, D2, & D1 Bands with Daubechies wavelet of the order 1 for Myopathy Data 
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TABLE VIII MAXIMUM VALUES OF FEATURES EXTRACTED FOR A5, D5, D4, D3, D2 & D1 BANDS WITH DAUBECHIES  
WAVELET OF THE ORDER 1 FOR MYOPATHY DATA 
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Fig. 18 Maximum values of features extracted for A5, D5, D4, D3, D2, & D1 Bands with Daubechies wavelet of the order 1 for Myopathy Data 
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TABLE IX  MINIMUM VALUES OF FEATURES EXTRACTED FOR A5, D5, D4, D3, D2, & D1 BANDS WITH DAUBECHIES WAVELET OF THE 
ORDER 1 FOR MYOPATHY DATA 
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Fig. 19 Minimum values of features extracted for A5, D5, D4, D3, D2, & D1 Bands with Daubechies wavelet of the order 1 for Myopathy Data 

 
Overall Observation for Experimentation: The Average 
value of Mean is increasing between A5-D5 Bands, 
decreasing between D5-D4 Bands, increasing between D4-
D3 Bands, decreasing between D3-D2 Bands, and 
increasing between D2-D1 Bands. The Average value of 
VAR is increasing between A5-D5 Bands, decreasing 

between D5-D4 Bands, increasing between D4-D3 Bands, 
decreasing between D3-D2 Bands, and decreasing between 
D2-D1 Bands. The Average value of MAV is increasing 
between A5-D5 Bands, decreasing between D5-D4 Bands, 
increasing between D4-D3 Bands, decreasing between D3-
D2 Bands, and decreasing between D2-D1 Bands. 

-16

-14

-12

-10

-8

-6

-4

-2

0

2

A5 Band

D5 Band

D4 Band

D3 Band

D2 Band

D1 Band

32AJCST Vol.11 No.1 January-June 2022

Shubha V. Patel and S. L. Sunitha



The Average value of RMS is decreasing between A5-D5 
Bands, increasing between D5-D4 Bands, decreasing 
between D4-D3 Bands, decreasing between D3-D2 Bands, 
and decreasing between D2-D1 Bands. The Average value 
of WL is decreasing between A5-D5 Bands, increasing 
between D5-D4 Bands, decreasing between D4-D3 Bands, 
decreasing between D3-D2 Bands, and decreasing between 
D2-D1 Bands. The Average values of ZC are decreasing 
between A5-D5 Bands, increasing between D5-D4 Bands, 
decreasing between D4-D3 Bands, decreasing between D3-
D2 Bands, and increasing between D2-D1 Bands.  
 
The Average value of LD is increasing between A5-D5 
Bands, increasing between D5-D4 Bands, decreasing 
between D4-D3 Bands, decreasing between D3-D2 Bands, 
and decreasing between D2-D1 Bands. The Average values 
of DASDV are decreasing between A5-D5 Bands, 
decreasing between D5-D4 Bands, increasing between D4-
D3 Bands, decreasing between D3-D2 Bands, and 
decreasing between D2-D1 Bands.  
 
The Average values of AAC are decreasing between A5-D5 
Bands, decreasing between D5-D4 Bands, increasing 

between D4-D3 Bands, decreasing between D3-D2 Bands, 
and decreasing between D2-D1 Bands. The Average values 
of VAV are decreasing between A5-D5 Bands, increasing 
between D5-D4 Bands, decreasing between D4-D3 Bands, 
decreasing between D3-D2 Bands, and decreasing between 
D2-D1 Bands. The Average value of Kurtosis is decreasing 
between A5-D5 Bands, increasing between D5-D4 Bands, 
decreasing between D4-D3 Bands, increasing between D3-
D2 Bands, and increasing between D2-D1 Bands. The 
Average value of Skewness is decreasing between A5-D5 
Bands, decreasing between D5-D4 Bands, decreasing 
between D4-D3 Bands, decreasing between D3-D2 Bands, 
and decreasing between D2-D1 Bands. 
 
Random Forest Classifier: A random forest is a meta 
estimator that fits several decision tree classifiers on various 
sub-samples of the dataset and uses averaging to improve 
the predictive accuracy.  
 
Multilayer perceptron is a class of feedforward ANN. The 
term MLP is used ambiguously, sometimes loosely to mean 
any feedforward ANN. 

 
TABLE X RESPONSE OF MLP AND RF CLASSIFIERS FOR DIFFERENT TEST SAMPLE SIZE 

SYM10 
Test Size = o.4 Test Size = o.3 Test Size = o.2 Test Size = o.1 

Seg Lvl Smpl  Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl 
MLP 0.7716 0.7988 0.7787 0.8102 0.8051 0.8142 0.7849 0.8043 

RF 0.733 0.7768 0.7351 0.7992 0.7196 0.7431 0.7486 0.826 
 

TABLE XI RESPONSE OF MLP AND RF CLASSIFIERS FOR DIFFERENT TEST SAMPLE SIZE 

SYM9 
Test Size = o.4 Test Size = o.3 Test Size = o.2 Test Size = o.1 

Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Seg Lvl Smpl Lvl Seg Lvl 
MLP 0.7829 0.8264 0.763 0.7883 0.7913 0.8415 0.7852 0.826 

RF 0.7364 0.7878 0.732 0.7481 0.718 0.7431 0.744 0.8043 
 

TABLE XII RESPONSE OF MLP AND RF CLASSIFIERS FOR DIFFERENT TEST SAMPLE SIZE

SYM6 
Test Size = o.4 Test Size = o.3 Test Size = o.2 Test Size = o.1 

Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Seg Lvl Smpl Lvl Seg Lvl 
MLP 0.7802 0.8044 0.7883 0.8284 0.781 0.8087 0.7847 0.8152 

RF 0.7348 0.7741 0.7367 0.781 0.7184 0.754 0.7429 0.7826 
 

TABLE XIII RESPONSE OF MLP AND RF CLASSIFIERS FOR DIFFERENT TEST SAMPLE SIZE 

SYM3 
Test Size = o.4 Test Size = o.3 Test Size = o.2 Test Size = o.1 

Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Seg Lvl Smpl Lvl Seg Lvl 
MLP 0.7933 0.8209 0.7938 0.8284 0.8065 0.8142 0.7893 0.826 

RF 0.7557 0.8044 0.7445 0.7956 0.708 0.7322 0.7407 0.8152 
 

TABLE XIV RESPONSE OF MLP AND RF CLASSIFIERS FOR DIFFERENT TEST SAMPLE SIZE 

SYM2 
Test Size = o.4 Test Size = o.3 Test Size = o.2 Test Size = o.1 

Seg Lvl Smpl Lvl Seg Lvl Smpl Lvl Seg Lvl Seg Lvl Smpl Lvl Seg Lvl 
MLP 0.7933 0.8209 0.7938 0.8284 0.8065 0.8142 0.7893 0.826 

RF 0.7557 0.8044 0.7445 0.7956 0.708 0.7322 0.7407 0.8152 
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The extracted features from the WT and DMW and test 
features for the different test sizes of myopathy samples are 
classified using Random Forest and MLP classifiers. The 
response for the different size samples is tabulated in 10, 11, 
12, 13 and 14 respectively. Based on the results obtained, 
the accuracy of the model recorded up to 98% and claimed 
that the results were better compared to the existing model. 
 

V. CONCLUSION AND FUTURE SCOPE 
 

In this paper, the combined time and frequency analysis has 
been carried out to extract the required features using 
Wavelet Transform and Daubechies mother wavelet 
techniques. The features generated are tested on Myopathy 
dataset using Random Forest (RF), and multilayer 
perceptron (MLP) classifiers. The standard data set has been 
used for the purpose. The classifier model has used 80% 
data as a training set and the remaining 20% of data as the 
test set. The result shows that Random Forest and MLP 
perform better with an accuracy of 98 %. Based on the 
results obtained, the classification model serves as a 
promising candidate for control of lower limb for paralyzed 
person. Further, the model can still be improved by 
considering concatenated or fusion of various spatial and 
transform domain approaches on various datasets such as 
ALS, Normal data, real time data samples to detect the 
paralyzed data. 
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