
Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P); 2583-7907 (E)

Vol.12 No.2, 2023, pp.48-65
© The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ajcst-2023.12.2.3763

A Comprehensive Hybrid Model for Language-Independent Defect
Prediction in Microservices Architecture

Yashwant Kumar1 and Vinay Singh2
1Joint Director (IT, NIC), 2Associate Professor,

1&2Department of Computing and Information Technology, Usha Martin University, Jharkhand, India
E-mail: yashwant.k@nic.in, vinay.singh@ushamartinacademy.org

(Received 15 September 2023; Revised 1 November 2023; Accepted 17 November 2023; Available online 23 November 2023)

Abstract - The transformation of software development from
monolithic frameworks to microservices-based architectures,
focusing on the challenges of creating a unified defect prediction
model that spans various programming languages in practice of
automating integration of code modification into a single
codebase. It proposes a hybrid machine learning approach to
enhance defect prediction accuracy by integrating different data
sources and algorithms. The goal is to create a language and
project-independent model. The hybrid model combines Bi-
Directional LSTM (BiD-LSTM) networks and Attention
mechanisms, static code metrics, and BERT-based language
models. BiLSTM-Attention captures temporal dependencies
within Abstract Syntax Trees (ASTs), static code metrics provide
insights into software complexity, and BERT interprets textual
context for a holistic understanding of code snippets. The
research methodology involves quantitative techniques, starting
with a literature review to establish the theoretical foundation.
An empirical study follows, encompassing data gathering,
feature crafting and pre-processing, model building, training
and evaluation, validation and analysis and conclusions. The
research’s insights aim to improve defect prediction techniques,
contributing to software engineering’s pursuit of better quality
and reliability.
Keywords: Software Defect Prediction, Machine Learning
Approach, Predictive Accuracy, Hybrid Model, BiD-LSTM,
BERT, ASTs

I. INTRODUCTION

Software defect prediction model is an artefact of application
of statistical and machine learning techniques. Defect
prediction is an essential task during software development
life cycle. Early detection of faults saves money and time for
the companies. It is aimed at identifying the code which has
a potential bug that helps to correct it during the development
process itself.

The defect prediction model helps the developer and project
managers to find the likelihood of defects in specific
modules, codes, classes, components, processes or files. By
early detection of defects, resource allocation can be
efficiently managed. It also helps in prioritising test cases and
ensures the software’s quality. The implementation of best AI
model in CICD pipeline is must for identifying the early bugs
before successful deployment of any modules.

A. Background and Motivation

The background and motivation for creating a good model by
utilizing Machine Learning methods for anticipating
software flaws is to augment software development
processes, reduce costs, enhance software quality, and deliver
more reliable and robust software products [1]. Let’s explore
the key reasons behind this initiative.

1. Quality Improvement: Defect anticipating models are
designed to spot possible defects or errors in software code at
an early stage of the development process. By anticipating
defects prior to their deployment and integration into the
larger system, developers can take pre-emptive measures to
address them, resulting in improved code quality and a
reduced chance of defects making their way into the
production environment [2].

2. Cost Reduction: Fixing defects in software can be costly,
especially if they are detected late in the development
lifecycle or, worse, after the software has been deployed to
production. Defect prediction models help catch issues early,
saving both time and resources required for bug fixing and
maintenance.

3. Enhancing Developer Productivity: When developers have
insights into potential problem areas in the code, they can
focus their efforts on critical sections, optimize their work,
and prioritize bug-fixing tasks more efficiently.

4. Risk Mitigation: Predicting defects can help project
managers and stakeholders assess and manage project risks.
It allows for better planning and resource allocation to
address potential quality issues.

5. Continuous Integration and Delivery (CICD) Pipeline
Improvement: Defect prediction models can be integrated
into the CI/CD pipeline, allowing for automated checks
during the build and deployment processes. This integration
ensures that the software meets predefined quality criteria
before being released. That aids in DevOps practice.

48AJCST Vol.12 No.2 July-December 2023

6. Software Security Enhancement: Certain defects can lead
to security vulnerabilities, making the software susceptible to
attacks. Defect prediction models can help identify such
vulnerabilities early on and support the development of more
secure software.

7. Data-Driven Decision Making: Machine Learning models,
when trained on historical software data, can identify patterns
and trends that human developers might miss. These models
provide an additional data-driven perspective to aid in
decision-making.

8. Benchmarking and Comparative Analysis: Defect
prediction models can be used to benchmark different
projects or teams based on their defect-proneness. This
enables organizations to compare the quality of various
projects and identify areas for improvement.

9. Research and Innovation: The creation of good defect
prediction models using Machine Learning also fuels
exploration and advancement in the realm of software
engineering and data science. Researchers continuously
explore new approaches, algorithms, and data sources to
enhance the effectiveness and accuracy of the models [3].

Machine learning (ML) has risen as a potential tool across
diverse domains, including software engineering, due to its
ability to analyse large volumes of data, understand patterns,
and do predictions [4]. In last few years, ML techniques had
being applied to defect guessing with promising results. By
leveraging historical data on software defects and associated
code attributes, machine learning models can learn patterns
and make predictions about the likelihood of defects in new
or modified code. By leveraging ML techniques to build
reliable and accurate models to anticipate software issues,
software development teams can significantly enhance their
development processes, reduce the occurrence of defects,
improve software quality, and ultimately deliver better
software products to users.

The scope of creating a source code-based model for
predicting software defects and other static code metrics is
vast and holds significant potential for improving software
quality and development practices [5]. The NLP approach
aims to leverage the natural language patterns present in
source code, comments, and documentation to enhance
defect prediction accuracy. The model aims to extract
meaningful information from this unstructured text and use it
as input for defect prediction tasks.

B. Problem Definition and Objective

The problem at hand is the shift in software development
from single-language frameworks to multi-language
microservices architecture. Microservices involve breaking
down complex applications into smaller, independent
services, each serving a specific business function and
communicating through Web APIs. These services can be
written in different programming languages like Java, PHP,

Python, C# and JavaScript. The challenge lies in developing
a unified software defect predictor model that can be used
across these different programming languages within a CICD
pipeline.

The objective was to create a proposed Hybrid model that
utilizes Abstract Syntax Tree (AST), static code metric and
source code from various cross-project and cross-version
datasets as input features. This model was tested and
demonstrated superior performance compared to alternatives.

C. Key Aspects of the Scope

1. Data Collection and Preparation: Collecting labelled
datasets of source code and defects for training and
evaluating the NLP model. Ensuring the data is representative
of different software projects and domains.

2. Textual Data Analysis: The model will focus on processing
and analysing textual data from various sources, such as
source code, comments and documentation.

3. Feature Extraction: NLP techniques is applied to extract
meaningful pattern from the textual data. This may include
keyword extraction, sentiment analysis, topic modelling, and
semantic analysis. [6]. The technique will also be applied to
extract relevant features from source code, such as code
tokens, API usage patterns, variable names, and comment
sentiments, to be used as inputs to the NLP model.

4. Model Development: The model DL algorithms to spot the
likelihood of issues based on the extracted features from the
textual data, Designing and training the NLP model, which
could also involve approaches like recurrent neural networks
(RNNs), LSTM, transformer-based models like BERT.

5. Code Representation: Exploring methods to represent
source code and other static code metrics in a format suitable
for NLP models, such as embedding or tokenization
techniques.

6. Model Evaluation: Performing thorough assessments to
measure the effectiveness of the NLP-driven defect
prediction model, utilizing metrics such as F1-score,
precision, accuracy, recall and the AUC-ROC.

7. Generalization: The NLP-based model would be designed
to integrate seamlessly with existing defect prediction
systems or software development workflows. Assessing the
generalization capabilities of the model by testing it on
unseen datasets from different projects to determine its
applicability beyond a specific context.

D. Proposed Model at a Glance

The proposed model is a Multi-Input Hybrid Model designed
for accurate defect prediction in modern software
engineering. It combines Source Code Metrics, Abstract
Syntax Tree (AST) Tokens, and Bidirectional Encoder

49 AJCST Vol.12 No.2 July-December 2023

A Comprehensive Hybrid Model for Language-Independent Defect Prediction in Microservices Architecture

Representations from Transformers (BERT) to enhance
prediction accuracy. This model aims to depicts a detailed
examination of its structure and components, with the goal of
surpassing traditional defect prediction techniques by
leveraging the contextual understanding capabilities of BERT
for precision and robustness in defect prediction.

The upcoming sections will delve into the related work
followed by detailed examination of proposed model’s each
component, explaining their importance and how they
contribute to the model’s main goal. The integration process
will be described step by step, illustrating how these different
elements work together to create a comprehensive and
unified framework. Additionally, the article will discuss the
potential advantages and real-world implications of the
Multi-Input Hybrid Model, emphasizing its ability to
significantly improve defect prediction accuracy.

In essence, the journey embarked upon in this article lays the
groundwork for a paradigm shift in the realm of defect
detection. By embracing the fusion of diverse data sources
and cutting-edge technologies, the proposed model seeks to
reshape the landscape of software quality assurance, offering
an innovative and powerful tool for identifying defects and
enhancing software reliability.

II. REVIEW OF LITERATURE

To improve defect prediction efficiency, researchers and
practitioners continue to explore and develop more advanced
and automated techniques, such as machine learning-based
models, data mining, and AI-driven methods that can handle
large-scale codebases and provide more accurate predictions
with reduced human intervention as mentioned by Mendez,
Padala and Burnett et al., [7] [8].

A. Some ML Algorithms

1. Statistical Techniques (Regression Models): Menzies;
Butcher; Cok and Marcus et al. explained Regression models
that are frequently employed in defect prediction within
software development. These models, includes logistic
regression, multiple linear regression and Poisson regression
were examined in connection to software metrics and the
presence of defects. Common predictors used in these models
encompass code complexity, code churn, code size, and
developer experience [9].

2. Decision Trees: Ibarguren, Perez, Mugerza, Rodriguezx,
Harrison et al. used Decision Trees (DT) are hierarchical
models that iteratively divide the data using the most
influential predictors. They are commonly used in defect
prediction due to their simplicity and interpretability.
Decision trees exhibit versatility in software defect prediction
tasks since they can accommodate both categorical and
numerical data [10] [11].

3. Naive Bayes Classifier: Ahmet Okutan and Olcay Taner
Yıldız explained Naive Bayes classifier which assumes

feature independence for probabilistic classification. It has
been applied to software defect prediction, where the features
represent software metrics and the class labels represent
defective or non-defective modules [12].

4. Neural Networks: Giray, Kwabena, Köksal, Babur,
Tekinerdogan referred Neural networks and used in software
defect prediction, addressing intricate metric-defect
relationships and large dataset learning. Techniques like
feedforward neural networks or recurrent neural networks
have been explored for this purpose [3].

5. Genetic Algorithms: Nalini and Krishna used Genetic
algorithms to optimize defect prediction models by seeking
ideal feature combinations and model parameters for
performance maximization [13]. These software defect
prediction methods have undergone thorough extensively
studied and have demonstrated potential benefits in
numerous empirical investigations. The effectiveness of
these methods may vary depending on factors such as project
context, data quality, and specific defect prediction tasks
across projects and languages.

B. Review of Deep Learning Related Studies on SDP

Zheng, Gao, Fengyu, Xun, Liu, Xiang Chen study assesses
different deep learning models, including Convolutional
Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks, for software defect prediction. The
authors analyse these models’ real-world dataset performance
and offer insights into their respective pros and cons [14].

Lang, Li and Kobayashi introduce a streamlined
Convolutional Neural Network (CNN) for software defect
prediction and conduct an empirical study across various
software projects. They compare their CNN model to
conventional machine learning methods, showcasing its
effectiveness in defect prediction tasks [15].

The paper by Bahaweres, Jumral and Hermadi et al.,
introduces a hybrid strategy, fusing Long Short-Term
Memory (LSTM) neural networks with conventional
machine learning techniques for software defect prediction.
It demonstrates that this hybrid model can enhance prediction
accuracy, surpassing individual methods [16].

Dada, Oyewola, Joseph and Dauda suggest an ensemble
method that merges several machine learning algorithms like
Random Forest, SVM, and Gradient Boosting for open-
source software defect prediction. They assess the ensemble’s
performance across diverse datasets and analyse its
effectiveness [17].

Giray et al., in their work, researchers present a cost-sensitive
Convolutional Neural Network (CNN) tailored for software
defect prediction. They tackle the challenge of imbalanced
data in defect prediction and demonstrate that the cost-
sensitive CNN enhances predictive performance on
imbalanced datasets [3].

50AJCST Vol.12 No.2 July-December 2023

Yashwant Kumar and Vinay Singh

Laradji, Alshayeb and Ghouti questioned the standalone
effectiveness of various algorithms in software defect
prediction, including Decision Trees, Artificial Neural
Networks and Bayesian methods, and they noted that these
methods performed sub-optimally with skewed and
redundant defect datasets and deteriorated further when
datasets contained incomplete or irrelevant features. Support
Vector Machines (SVMs) often exhibit a bias towards the
majority class, leading to high false negative rates due to the
neglect of the minority class. To mitigate these issues,
ensemble learning models are recommended as effective
solutions [18].

Lei Qiao, Xuesong Li, Qasim Umer and Ping Guo discussed
various Machine Learning Methods of Defect Prediction
Techniques and its shortcomings. The current performance
metrics, such as mean square error and squared correlation
coefficient, require notable enhancements. This paper
presents a deep learning-driven defect prediction model using
regression to estimate defect counts in a module. The
proposed method is evaluated for effectiveness in
comparison to three state-of-the-art approaches Support
Vector, Decision Tree Regression and FSVR [19].

Siers and Islam proposed technique was empirically assessed
using six classifier algorithms on six widely used clean
software defect prediction datasets. This cost-sensitive
learning model was seen as a way to save money for software
development groups, emphasizing the importance of
avoiding false negative predictions, even if it means having
some false positives. The study also explored a method for
integrating oversampling into the Cost Sensitive Forest [20].

Cong and Shu-Wei applies a hybrid of Artificial Neural
Network (ANN) and Quantum Particle Swarm Optimization
(QPSO) for software fault-proneness prediction. QPSO
reduces dimensionality, while ANN classifies software
modules as fault-prone or not. The combination of ANN and
QPSO results in an effective software fault-proneness
prediction approach [21].

He, Li, Liu et al., tallied metric occurrences in each
prediction model and identified the top-k representative
metrics as a universal feature subset for defect prediction
across projects, making it suitable for projects lacking
sufficient historical data. With more extensive training, the
top-k feature subset becomes increasingly versatile [22].

To mitigate the unavailability of local historical data, Chen,
Fang, Shang and Tang have embraced Cross-company defect
prediction (CCDP). The approach involves preprocessing
training data from external sources, re-weighting using a
transfer method with data gravitation, and combining it with
a small portion of local data to build prediction models [23].

Today’s software industry often involves complex,
configurable software, with a growing number of features
leading to a vast configuration space. To understand the
impact of various configurations on system performance,

predictive models are employed. Shailesh, Nayak and Prasad
in their paper suggested using a Neural Network model along
with statistical techniques to predict system performance
based on input configurations [24].

The study by Malhotra, Bahl, Sehgal and Priya in their paper
compare 14 Machine Learning techniques for defect
prediction using 9 open-source datasets in Weka and
statistically analyses the models with SPSS. Results indicate
Single Layer Perceptron as the most effective technique [25].

The paper by Tran, Hanh and Binh explores a method that
combines feature selection and ensemble learning to tackle
feature redundancy and class imbalance in software fault
prediction. Additionally, it employs a deep learning model to
enhance fault prediction model performance. The approach is
tested on 12 NASA datasets [26].

The growing complexity of IoT applications poses a
challenge for fault prediction in human-device interactions.
Souri, Mohammed and Potrus introduce a hybrid fault
prediction model using MLP and PSO, verified through
behavioural modelling [27].

Elahi, Kanwal and Asif examined various ensemble methods
to enhance prediction model performance and benchmarked
model averaging using methods like voting and stacking [28].

Ge et al., and Xu et al., presents performance of SVM and
RF in defect prediction was assessed, emphasizing RF’s
effectiveness in managing noisy data. Walunj et al., Liang,
Yu, Jiang, and Xie Presented an innovative deep learning
method employing Long Short-Term Memory (LSTM)
networks for defect prediction based on time series data [29]
[30] [31] [32].

Alsolai and Roper examined how different feature selection
techniques, such as Relief-F and Chi-Square, influence
model accuracy in defect prediction [34]. The proposal
suggests a hybrid method that combines static code metrics
and process metrics to enhance the effectiveness of feature
discrimination [33].

Pardalos, Rasskazova, and Vrahatis introduced LIME, a
model-agnostic method for explaining predictions made by
black-box machine learning models in the realm of defect
prediction [35]. Mori and Uchihira created a rule-based
classifier to offer clear and understandable defect predictions
[36].

C. Research Gap

The field of software defect prediction through machine
learning has seen significant research, encompassing diverse
methods. Traditional machine learning algorithms and
advanced models like CNNs and LSTMs have been explored.

Ensemble and cost-sensitive techniques address specific
challenges. With the field’s evolution, we can anticipate the

51 AJCST Vol.12 No.2 July-December 2023

A Comprehensive Hybrid Model for Language-Independent Defect Prediction in Microservices Architecture

exploration of more advanced methods and larger datasets to
enhance software defect prediction models’ accuracy and
applicability.

After conducting an extensive literature review, we have
identified multiple research gaps and potential avenues for
future exploration in the application of machine learning for
software defect prediction.

1. Cross-Domain Transferability of Models: While the
existing studies demonstrate promising results within
specific domains, there is a lack of research on the
transferability of defect prediction models across different
industries and project types. Future research should focus on
evaluating the effectiveness of models trained on one domain
to predict defects in unrelated domains.

2. Real-Time Defect Prediction: Most studies focus on
predicting defects on historical data, but there is a growing
need for real-time defect prediction during software
development. Investigating the feasibility and performance
of machine learning models in a real-time setting can
significantly impact software quality assurance practices.

3. Addressing Longitudinal Aspects: To better understand the
evolution of software projects, it is essential to explore
longitudinal defect prediction, considering how models adapt
to changing project dynamics over time.

4. Integrating Traditional and Machine Learning
Approaches: While machine learning techniques show
promise, combining them with traditional defect prediction
methods, such as code reviews and inspections, could lead to
more robust and effective prediction systems.

5. Interpretability of Complex Models: With the growing
popularity of deep learning models in defect prediction, it
becomes crucial to create methods that provide insights into
intricate model decisions, allowing stakeholders to have
confidence in and comprehend the predictions. By presenting
these research gaps, the article sets the stage for research to
address important challenges and advancement in the field of
software quality by predicting defects using proposed
machine learning techniques.

III. METHODOLOGY

This section is a crucial part of the article, as it outlines the
overall strategy and methodology adopted to conduct the
study. This section provides a detailed explanation of the
steps that is followed to carry out the research, ensuring
transparency and replicability. Below is an elaboration of the
contents for this section.

A. Data Collection and Preprocessing

Data gathering and pre-processing involved, collection of
dataset that includes source code files, static code metrics,

and corresponding labels indicating whether each module is
defective or not (binary classification task). The dataset had
a sufficient number of samples to build an effective predictive
model. The dataset used for training and evaluation in the
Cross-Language Software Defect Predictor project was
collected from various open-source repositories on platforms
like GitHub, PROMISE-backup-master, Bitbucket, or
GitLab. These repositories contain code written in different
programming languages, including but not limited to Java,
JavaScript, C++, Python, and C-Sharp. The dataset was
curated to include projects with labeled information about
defective and defect-free code examples.

B. Data Preprocessing

The raw dataset obtained from the repositories underwent
several pre-processing steps to prepare it for training and
evaluation. The purpose of processing is to construct a multi-
input neural network (Hybrid Model) that combines AST
embeddings, static code metrics, and BERT embeddings for
Source code with Bidirectional LSTM (BiLSTM) and
Attention, The Keras, and Transformer’s functional API were
used. This architecture allowed to handle multiple inputs and
build complex models with ease. The pre-processing steps
include,

1. Language Identification: Since the repositories contain
code from multiple programming languages, an initial
language identification step was performed to categorize
each file into its respective programming language using
language-specific heuristics.

2. Lexical Analysis: After language identification next step
was lexical analysis, also known as lexing. In this step, the
source code was read character by character, and sequences
of characters were identified as tokens based on predefined
rules and grammar files. These rules are defined using regular
expressions or finite state machines. The code files were
tokenized using the language-specific lexer generated by
ANTLR for each supported programming language. This
process involved creating the custom code in Java for
converting the source code into a stream of language-specific
tokens, such as keywords, identifiers, literals, and operators.

3. AST Token Generation: The token streams were then
passed through the corresponding language-specific parser
generated by ANTLR to construct Abstract Syntax Trees
(ASTs) or parse trees representing the hierarchical structure
of the code.

Just like natural or formal languages, programming
languages exhibit linguistic features such as syntax,
semantics, pragmatics, and grammatical rules. Custom code
is employed to utilize the language recognition tool ANTLR
for transforming source code into a sequence of language-
neutral tokens, as demonstrated below.

52AJCST Vol.12 No.2 July-December 2023

Yashwant Kumar and Vinay Singh

TABLE I EXTRACT LANGUAGE NEUTRAL TOKENS FROM THE SOURCE CODE OF JAVA FILE
Package Declaration, annotation, import Declaration, type Declaration, class Or Interface Modifier, class Declaration,
enum Declaration, interface Declaration, annotation Type Declaration, modifier, class Or Interface Modifier, variable
Modifier, type Parameters, type Type, type List, class Body, type Bound, enum Constants, enum Body Declarations,
interface Body, member Declaration, method Declaration, method Body, type Type Or Void, generic Method Declaration,
generic Constructor Declaration, constructor Declaration, field Declaration, const Declaration etc

From the generated ASTs Tokens, various language-
independent features patterns were extracted automatically.
These features may have included control flow information,
variable usage patterns, function call patterns, and many
more. The aim was to create a uniform set of tokens that could
be used for defect prediction across different programming
languages. Further these AST tokens have been converted
into language-independent AST embeddings using deep
learning.

4. Static Code Feature Selection: When developing models
for software defect, it’s essential to carefully select relevant
and well-established metrics based on empirical evidence and

prior research [37] [38]. The choice of metrics for predicting
bugs in a dataset depends on various features, including the
nature of the data, the characteristics of the software project,
and the machine learning or statistical techniques being used.
It’s recommended to perform feature selection and
experimentation to identify the most relevant metrics for
predicting bugs in dataset. Machine learning techniques such
as decision trees, logistic regression, random forests, and
SVMs were often tried for this purpose.

However, some commonly used metrics [39] that have been
used here and shown predictive power for bug prediction in
Modules are listed below.

TABLE II LIST OF ADOPTED SOURCE CODE STATIC METRICS

Metric
Abbreviation Full Form Descriptions with Rationale for Selection

WMC Weighted Methods per
Class

A measure of the complexity of the class, calculated as the sum of complexity
weights of all methods in the class. (High complexity classes may be more error-
prone.)

DIT Depth of Inheritance
Tree

The number of levels in the class’s inheritance hierarchy. (Deep inheritance
hierarchies might increase complexity and lead to bugs.)

NOC Number of Children The number of classes that inherit directly from this class. (Classes with many
direct subclasses may inherit defects.)

CBO Coupling Between
Objects

The number of other classes to which this class is coupled. (High coupling between
classes might indicate potential bug propagation.)

RFC Response for a Class The number of methods in the class that can be invoked in response to a message.
(Classes with high RFC might be more error-prone.)

LCOM Lack of Cohesion in
Methods

A measure of the cohesion among methods in the class. (Low cohesion could lead to
more bugs.)

CA Afferent Couplings The number of other classes that depend on this class. (High afferent couplings may
suggest higher potential for defects.)

CE Efferent Couplings The number of other classes that this class depends on. (High efferent couplings
might indicate potential bug propagation.)

NPM Number of Public
Methods

The number of public methods in the class. (The number of public methods may
influence defect-proneness.)

LOC Lines of Code The total number of lines of code in the class. (Larger classes may have more
defects.)

DAM Data Access Metric A measure of data access complexity in the class. (High DAM may indicate more
complex data access and potential bugs.)

MOA Measure of Aggregation The number of data members in the class. (High MOA might indicate more complex
classes and higher defect-proneness.)

MFA Measure of Functional
Abstraction

A measure of functional abstraction based on the methods in the class. (High MFA
might indicate more complex classes and higher defect-proneness.)

CAM Cohesion Among
Methods of Class

A measure of cohesion among methods. (High CAM might indicate more cohesive
classes and lower defect-proneness.)

IC Inheritance Coupling The number of parent classes that the class inherits from. (High IC may suggest
potential bug propagation.)

CBM Coupling Between
Methods

The number of method calls to other methods within the class. (High CBM might
indicate higher inter-method dependencies and potential bug propagation.)

AMC Average Method
Complexity

The average complexity of methods in the class. (High AMC might indicate more
complex methods and potential bugs.)

MAX_CC Maximum McCabe
Cyclomatic Complexity

The highest complexity value among methods in the class. (Classes with high
Cyclomatic complexity might be more error-prone.)

AVG_CC Average McCabe
Cyclomatic Complexity

The average complexity value of methods in the class. (High average Cyclomatic
complexity might indicate higher defect-proneness.)

53 AJCST Vol.12 No.2 July-December 2023

A Comprehensive Hybrid Model for Language-Independent Defect Prediction in Microservices Architecture

The “Number of Children (NOC)” metric holds significance
for bug prediction and software maintenance, as it indicates
the classes directly inheriting from a specific class,
potentially leading to defects due to complexities and
dependencies. LCOM measures cohesion within a class by
counting method pairs not sharing instance variables, with
higher values suggesting lower cohesion and a potential for

defects. LCOM3 is a less commonly used variation. The
study created a dataset with AST embeddings, static code
metrics, and tokenized source code as inputs and bug labels
as outputs. The hybrid model processes AST embeddings and
static code metrics separately, combines BERT embeddings,
and uses dense layers for defect prediction. The final sample
representation of data set looked like below.

TABLE III SNAPSHOT REPRESENTATION OF DATASET

Package Identifier Static Code Metrics AST Tokens Source Code Tokens bug

org.apache.tools.ant.Ant
ClassLoader

[{‘wmc’: 49,
 ‘dit’: 2,
 ‘noc’: 1,

 ‘cbo’: 24,
 ‘rfc’: 126,

 ‘lcom’: 926,
 ‘ca’: 18,
 ‘ce’: 8,

 ‘npm’: 31,
 ‘lcom3’:

0.883333333,
 ‘loc’: 1512,
 ‘dam’: 0.7,
 ‘moa’: 1,

 ‘mfa’:
0.441558442,

 ‘cam’:
0.163461538,

 ‘ic’: 1,
 ‘cbm’: 5,

 ‘amc’:
29.44897959,

 ‘max_cc’: 12,
 ‘avg_cc’: 1.9796}

compilationUnit,package
Declaration, qualifiedNa...

package
org.apache.tools.ant;
\nimport java.io....

1

…. …. …. …. ….

5. Data Cleaning: In data cleaning process duplicate and
irrelevant samples were removed. special symbols in text
data of AST and source code tokens were removed and
sanitized. Applied text preprocessing techniques like
lowercasing, removing punctuation, and handling special
characters. For numerical static code metrics, imputed
missing values using means or medians. For textual data like
source codes and AST tokens, used padding or masking.

6. BERT Representations for Source Code: BERT, a
transformer-based language model, excels in understanding
contextual information in source code, effectively capturing
semantic relationships and contextual meaning, enhancing its
value in defect prediction. Fine-tuned a pre-trained BERT
model on defect prediction task. Input the source code
sequences as text into BERT, and then take the [CLS] token’s
output as a high-level representation of the code. Now the
[CLS] token output can be used with the AST token
embeddings and static code metrics to form a multi input
representation.

The text tokens are converted into numerical representations.
This was done using transformer-based embeddings (BERT).
Also converted AST tokens into numerical representations.
This was done using word embeddings. System represented

the tokens as sequence of words of fixed vocabulary size and
split it. Then it converted the text to sequence using
Tokenizer. Finally, these tokens are converted into two
dimensional Vectors. This Vectors are further processed in
Embedding layer to converted into dense vector.

7. Feature Scaling: Normalized and standardized the static
code metrics to ensure that they are on similar scales. This
helps the model converge faster during training and prevents
certain features from dominating others.

8. Label Encoding: Converted the bug labels into numerical
format if they were not already. For binary labels, this could
be mapping ‘defective’ to 1 and ‘non-defective’ to 0.

9. Data Integration: Depending on the structure of a multi-
input deep learning model, it becomes necessary to combine
various data components. This might entail establishing
distinct input branches for static code metrics, source code,
and AST tokens.

10. Data Splitting: Partitioned the dataset into training,
validation, and test subsets, typically following a 70-75%
training, 10-15% test, and 10-15% evaluation split. The data
was shuffled to ensure impartiality during training.

54AJCST Vol.12 No.2 July-December 2023

Yashwant Kumar and Vinay Singh

Fig. 1 Summary of Transformer BERT Model

11. Understand Class Imbalance: Class imbalance is a
crucial consideration when dealing with software defect
prediction or any binary classification task. Addressing
class imbalance, where the representation of one class
(defective code) is significantly lower than the other (non-
defective code), is a crucial aspect of data preprocessing for
training data.

Analysed the distribution of bug labels in training set.
Calculate the ratio of defective to non-defective samples
within the training dataset. If the defect class is notably
smaller, a class imbalance problem is identified.

To address class imbalance, increased the count of minority
class instances by duplicating samples or generating
synthetic data points. Techniques like SMOTE or
ADASYN were employed for this purpose.

12. Evaluation Metrics Selection: Chose appropriate
evaluation metrics that consider class imbalance. Metrics
like precision, recall, F1-score, and area under the ROC
curve (AUC) are often more informative in imbalanced
scenarios than simple accuracy.

a. Recall = TP

(TF+FN)

b. Specificity = TN
(TN+FN)

c. Precision = TP
(TP+FP)

d. 1-Specificity = = FP
(TN+FP)

e. Accuracy = (TP+TN)
(TP+TN+FP+FN)

f. F1 Score = 2 x (Precision x Recall)
(Precision + Recall)

55 AJCST Vol.12 No.2 July-December 2023

A Comprehensive Hybrid Model for Language-Independent Defect Prediction in Microservices Architecture

Fig. 2 AUC-ROC Curve

The ROC curve is a probability curve, and the AUC is a
measure of how well a model can distinguish between defect
and non-defect cases.

13. Adjust Thresholds: By default, many models predict the
class with the highest probability. By modifying the
classification threshold to attain a specific trade-off between
precision and recall, considering the data distribution.

14. Hyper Parameter Tuning: Experiment with different
hyper parameters, architectures, and techniques to find the
best combination that handles class imbalance effectively.

15. Class Weights: Most deep learning frameworks allows to
assign different weights to classes during training. Assigning

higher weights to the minority class makes the model more
sensitive to its predictions. This informs the model to assign
higher importance to the minority class during training. This
adjustment helps the model to focus on correctly identifying
the defective instances despite their lower representation in
the dataset.

Dealing with class imbalance isn’t a universal fix; the optimal
method depends on the unique characteristics of the training
dataset. Evaluating the effect of class imbalance techniques
on the model’s performance is crucial, balancing the
avoidance of false positives and false negatives.

C. Feature Selection and Engineering

Static code metrics, source codes, and language-independent
AST tokens, a suitable model architecture for defect
prediction that spans across different programming
languages and software projects. could be a hybrid model that
combines both the AST tokens and static code metrics while
leveraging a powerful language model for understanding the
textual context. One such architecture could be a combination
of BERT-based sequence classification and a multi-input
neural network [40]. Feature selection is the process of
picking a subset of the most significant features from the
initial feature set. The objective is to decrease data
dimensionality while preserving or enhancing model
performance.

In proposed model, there are three types of features: AST
tokens, static code metrics and source codes.

Fig. 3 Correlation heat map among Static Code Metrics

56AJCST Vol.12 No.2 July-December 2023

Yashwant Kumar and Vinay Singh

IV. SUGGESTED FRAMEWORK FOR PREDICTING
SOFTWARE DEFECTS

In this study, a hybrid approach is chosen that leverages
multiple sources of information for defect prediction. The
selected machine learning algorithms include a combination
of traditional techniques and advanced deep learning models.
The chosen algorithms are as follows:

A. Bidirectional LSTM with Attention for AST Embeddings

The Bi - Directional Long short term memory (BiD-LSTM)
and Attention is a deep learning architecture tailored for
sequence data, such as Abstract Syntax Trees (AST) in source
code. It captures intricate temporal dependencies and
relationships present in code structures. AST representations
are crucial for capturing structural information from source
code. Bidirectional LSTM exploits both past and future
contexts, while the Attention mechanism focuses on relevant
parts of the code snippet.

B. Dense Layer for Static Code Metrics

A dense layer serves as a simple yet effective mechanism to
process static code metrics. It aggregates numeric features to
provide valuable insights into the software’s complexity and
maintainability. Static code metrics offer insights into
software complexity, which can correlate with defect-prone
areas. A dense layer effectively combines these features for
further analysis.

C. BERT-based Language Model for Source Code

Bidirectional Encoder Representations from Transformers
(BERT) is a powerful previously trained language model
capable of capturing contextual information from textual
data. Source code contains textual context that may be
indicative of defects. BERT’s ability to understand language
context makes it suitable for extracting features from code
snippets.

D. Model Architectures and Hyperparameter Tuning

The chosen algorithms are integrated into a hybrid model
architecture, which combines the outputs of the Bidirectional
LSTM, the dense layer for static code metrics, and the BERT-
based language model. This combined approach aims to
capture both structural and textual aspects of source code for
enhanced defect prediction.

1. Bidirectional LSTM with Attention

a. An embedding layer converts discrete AST tokens into
continuous vectors.

b. Spatial Dropout is applied to prevent overfitting by
dropping entire channels of feature maps.

c. Bidirectional LSTM captures sequential patterns in the
AST embeddings.

d. Attention mechanism highlights relevant parts of the
code snippet.

e. Flatten layer converts the attention output into a
suitable format for fusion.

2. Dense Layer for Static Code Metrics

a. A dense layer processes static code metrics, extracting
high-level features.

3. BERT-based Language Model for Source Code

a. BERT tokenizer prepares code snippets for input.
b. BERT model generates contextual embeddings for the

code snippets.

4. Hyperparameter Tuning Strategies

a. Batch Size: Tuning the batch size affects convergence
and memory usage. Smaller batch sizes of 32
improved generalizations.

b. Learning Rate: The learning rate governs the step size
during optimization. Grid search or random search has
been applied to find an optimal learning rate.

c. Dropout Rate: Dropout is a regularization technique to
mitigate overfitting. Hyperparameter search identified
the dropout rate that balances overfitting and under
fitting.

d. LSTM Units: The number of LSTM units influences
model complexity. A grid search revealed the optimal
number.

e. Number of Dense Layers: The number of dense layer
units can be tuned for controlling model capacity.

f. Embedding Dimensions: For the embedding layer,
different dimensions are explored to capture relevant
features.

E. Model Summary

The Deep Learning layers of Hybrid Model Summary is
given in the Table IV.

TABLE IV MODEL SUMMARY OF PROPOSED HYBRID
MODEL FOR SDP

Layers Shape Param
InputLayer (AST Input) 1851 0
Embedding 1851 x 128 256000
SpatialDropout1D 1851x128 0

Bidirectional LSTM 1851X392 509600
Attention 1851X392 0
Input Layer (Static Metrics Input) 0 0
Flatten 725592 0
Dense 32 672
Input Layer (BERT Input) 512 0

Concatenate 726136 0
Dense 128 92945536
Dense 1 129
Total Parameters 93711937
Trainable Parameters 93711937
Non-trainable Parameters 0

57 AJCST Vol.12 No.2 July-December 2023

A Comprehensive Hybrid Model for Language-Independent Defect Prediction in Microservices Architecture

The model consists of multiple input layers, each
representing a different type of data: AST embeddings
(ast_input`), static code metrics (static_metrics_input), and
BERT embeddings (bert_input).

The model contains several layers that process and transform
the input data. The Embedding layer converts AST tokens
into continuous vectors with an output shape of (None, 1851,
128), indicating a sequence length of 1851 tokens and an
embedding dimension of 128. The SpatialDropout1D layer
applies spatial dropout to the embedded sequences, resulting
in the same output shape as the embedding layer. The
Bidirectional layer implements a bidirectional LSTM to
capture sequential patterns in AST embeddings, resulting in
an output shape of (None, 1851, 392). The Attention layer
calculates attention scores over the bidirectional LSTM
output, maintaining the same output shape. The Flatten layer
flattens the attention output, transforming it into a vector of
shape (None, 725592). The model also includes a Dense layer
that processes the static code metrics, resulting in an output
shape of (None, 32). All these outputs are concatenated using
the `Concatenate` layer into a single feature vector of shape
(None, 726136). The concatenated features are then passed
through another Dense layer with 128 units, resulting in an
output shape of (None, 128). Finally, the last Dense layer
with a one unit and classifier sigmoid function produces the
model’s output with shape (None, 1), which corresponds to
the binary classification of defect presence or absence.

The Total parameters count (93,711,937) represents the total
number of adjustable parameters in the model. These
parameters are acquired through training to enhance the
model’s performance for the specified task. The count of
trainable parameters (93,711,937) signifies the quantity of
parameters that will undergo updates during training via
backpropagation.

The count of non-trainable parameters is zero that, implies
that there are no fixed or pre-initialized parameters in this
model. Non-trainable parameters are often associated with
elements like embedding layers using pre-trained
embeddings.

Overall, the model architecture is a complex composition of
various layers that process different types of data (AST
embeddings, static code metrics, and BERT embeddings) to
make a binary classification prediction for software defect
presence. The large number of trainable parameters suggests
that the model has the capacity to capture intricate patterns
and relationships present in the input data. The architecture is
designed to leverage the strengths of each input source,
ultimately contributing to more accurate software defect
predictions.

In conclusion, the hybrid approach combines the strengths of
different machine learning algorithms to predict software
defects. Bidirectional LSTM with Attention captures
structural dependencies, a dense layer processes static
metrics, and a BERT-based language model interprets textual

context. The model architectures and hyperparameter tuning
strategies are designed to maximize the predictive
performance of the hybrid model. This approach showcases
the potential of combining various data sources and
algorithms to enhance software defect prediction and
contribute to improved software quality and reliability.

V. EXPERIMENTAL SETUP

This section presents the outcomes of experiments conducted
to assess the performance of the hybrid model architecture
proposed for defect prediction. The hybrid model combines
the outputs of three components: The Bi- Directional LSTM,
the dense layer for static code metrics, and the BERT-based
language model. The aim of this hybrid approach is to exploit
both structural and textual features of source code to enhance
defect prediction accuracy.

A. Experimental Setup

Datasets: The dataset comprised of open-source software
projects from diverse domains. The dataset was preprocessed
to extract code snippets, static code metrics, and textual
descriptions. Each instance in the dataset was labelled code
snippet’s defect status, whether defective or non-defective, is
determined based on past defect records.

One set of summary of cross project processed data set from
GitHub Promise Backups [41] is given below.

The provided dataset summary tabulates the statistics for
different projects and their corresponding datasets in terms of
static code metrics, processed source code files, processed
AST data sets, and hybrid datasets for defect prediction. Let’s
break down the information presented in the table.
1. Sl. No. (Serial Number): Sequential number assigned to

each project.
2. Project: Name of the software project under

consideration.
3. Static Code Metrics Dataset

a. Bug: counts of instances (code snippets) labeled as
defective (containing bugs).

b. Clean: counts of instances labeled as non-defective
(bug-free).

c. Total: Sum of bug and clean instances, representing
the complete count of instances within the dataset of
static code metrics.

4. Processed Source Code Files
a. Bug: counts of processed source code files that contain

bugs.
b. Clean: counts of processed source code files that are

bug-free.
c. Total: counts of processed source code files.

5. Processed AST Data Sets
a. Bug: Number of processed abstract syntax tree (AST)

data sets that contain bugs.
b. Clean: Number of processed AST data sets that are

bug-free.
c. Total: Total number of processed AST data sets.

58AJCST Vol.12 No.2 July-December 2023

Yashwant Kumar and Vinay Singh

6. Hybrid Datasets
a. Bug: counts of instances labeled as defective in the

hybrid dataset.
b. Clean: counts of instances labeled as non-defective in

the hybrid dataset.
c. Total: counts of instances in the hybrid dataset.

For example, let’s take the first row as an example:

Project: apache-ant-1.6.0, Static Code Metrics Dataset
contains 92 instances of Bug, 259 instances of Clean and, that
is Total of (92 + 259) = 351 instances

In Processed Source Code Files contains 91 files is having
bug, 241 files are clean in total of sample is (91 + 241) = 332
Files.

In Processed AST Data Sets contains 91 data sets is having
bug, 241 data sets are clean in total of sample is (91 + 241) =
332 data sets

In Hybrid Datasets which contains the common data from
Static Code Metrics Dataset, Processed Source Code Files
and Processed AST Data Sets, has 91 instances of bug (i.e.,
minimum of all bug count), 241 instances of clean ((i.e
minimum of all clean count) in Total sample of (91 + 241)
332 instances.

This table offers an insight into the dataset’s structure,
encompassing the count of instances, files, and data subsets
for each project and dataset type. This information is crucial
for comprehending the data’s magnitude and distribution in
software defect prediction research.

TABLE V SCALE OF DATA DISTRIBUTIONS

Sl. No. Project
Static Code Metrics

Dataset
Processed Source

Code Files
Processed AST Data

Sets Hybrid Datasets

Bug Clean Total Bug Clean Total Bug Clean Total Bug Clean Total

1 apache-ant-1..6.0 92 259 351 91 241 332 91 241 332 91 241 332
2 apache-ant-1..7.0 166 579 745 166 573 739 166 573 739 166 573 739
3 jakarta-ant-1.3.0 20 105 125 20 104 124 20 104 124 20 104 124
4 jakarta-ant-1..4.0 40 138 178 40 136 176 40 136 176 40 136 176
5 jakarta-ant-1-5-0 32 261 293 32 259 291 32 259 291 32 259 291
6 camel-1- 0.0 13 326 339 26 508 534 13 326 339 13 326 339

7 camel-1- 2.0 216 392 608 432 531 963 216 379 595 216 379 595
8 camel-1- 4.0 145 727 872 290 1031 1321 145 703 848 145 703 848
9 camel-1- 6.0 188 777 965 376 1082 1458 188 747 935 188 747 935
10 jedit32source 90 182 272 90 170 260 90 170 260 90 170 260
11 jedit4.3source 11 481 492 11 476 487 11 476 487 11 476 487
12 jedit40source 75 231 306 75 218 293 75 218 293 75 218 293

13 jedit41source 79 233 312 79 221 300 79 221 300 79 221 300
14 jedit42source 48 319 367 48 307 355 48 307 355 48 307 355
15 log4j-1_2final 189 16 205 186 8 194 186 8 194 186 8 194
16 log4j-v_1_0 34 101 135 34 85 119 34 85 119 34 85 119
17 log4j-v_1_1 37 72 109 37 67 104 37 67 104 37 67 104

18 lucene-releases-
lucene-2.0.0 91 104 195 91 95 186 91 95 186 91 95 186

19 lucene-releases-
lucene-2.2.0 144 103 247 143 91 234 143 91 234 143 91 234

20
lucene-solr-
releases-lucene-
2.4.0

203 137 340 202 127 329 202 127 329 202 127 329

21 poi-REL_1_5_0 141 96 237 141 93 234 141 93 234 141 93 234

22 poi-
REL_2_0_RC1 37 277 314 37 265 302 37 265 302 37 265 302

23 poi-REL_2_5_1 248 137 385 248 130 378 248 130 378 248 130 378

24 poi-REL_3_0 281 161 442 280 156 436 280 156 436 280 156 436
25 synapse-1.0 16 141 157 16 141 157 16 141 157 16 141 157
26 synapse-1.1 60 162 222 60 162 222 60 162 222 60 162 222
27 synapse-1.2 86 170 256 86 170 256 86 170 256 86 170 256

59 AJCST Vol.12 No.2 July-December 2023

A Comprehensive Hybrid Model for Language-Independent Defect Prediction in Microservices Architecture

Sl. No. Project
Static Code Metrics

Dataset
Processed Source

Code Files
Processed AST Data

Sets Hybrid Datasets

Bug Clean Total Bug Clean Total Bug Clean Total Bug Clean Total
28 velocity-1.4 147 49 196 147 48 195 147 48 195 147 48 195
29 velocity-1.5 142 72 214 142 72 214 142 72 214 142 72 214
30 velocity-1.6 78 151 229 78 151 229 78 151 229 78 151 229
31 xalan-j_2_4_0 110 613 723 183 916 1099 109 561 670 109 561 670

32 xalan-j_2_5_0 387 416 803 569 608 1177 383 369 752 383 369 752
33 xalan-j_2_6_0 411 474 885 614 751 1365 404 461 865 404 461 865
34 xalan-j_2_7_0 898 11 909 1397 1 1398 895 1 896 895 1 896

35 xerces2-j-Xerces-
J_1_1_0 77 85 162 104 110 214 69 55 124 69 55 124

36 xerces2-j-Xerces-
J_1_2_0 71 369 440 105 499 604 71 368 439 71 368 439

37 xerces2-j-Xerces-
J_1_3_0 69 384 453 131 497 628 69 383 452 69 383 452

38 xerces2-j-Xerces-
J_1_4_4 437 151 588 267 118 385 213 118 331 213 118 331

Total 5609 9462 15071 7074 11218 18292 5355 9037 14392 5355 9037 14392

Fig. 5 Venn Diagram of common Package from All dataset

The hybrid model architecture was implemented using
Tensor Flow for the Bidirectional LSTM and the static code
metrics component, while PyTorch and the Transformers
library were used to integrate the BERT-based language
model.

VI. THE RESULT OF EXPERIMENT

The Table VI summarizes the performance metrics achieved
by the proposed hybrid model architecture in test set.

TABLE VI EXPERIMENT RESULT OF EVALUATION METRICS

Sl. No. Evaluation Metrics Values
1 Accuracy 85%
2 Recall 88%
3 F1-score 85%
4 Precision 82%
5 AUC-ROC 90%

Fig. 6 Experiment Results of AUC-ROC Evaluation

60AJCST Vol.12 No.2 July-December 2023

Yashwant Kumar and Vinay Singh

The ROC curve in Figure 6 showcases the balance between
the true positive rate (recall) and the false positive rate. The
AUC-ROC score of 0.90 signifies the hybrid model’s robust
capacity to differentiate between defective and non-defective
code snippets.

A. Comparison with Baseline Models

We evaluated the hybrid model’s performance in comparison
to three baseline models: a standalone Bi- Directional lstm
model, a Random Forest model, and a Bert-based
Transformers Model. The summarized results are presented
below.

TABLE VII COMPARISON WITH BASELINE MODELS

Sl. No. Model Accuracy Precision Recall F1-score AUC-ROC

1. Standalone Bidirectional LSTM 0.77 0.55 0.64 0.59 0.73
2. Random Forest 0.65 0.46 1.0 0.63 0.70
3. Standalone Transformer Model 0.68 0.44 0.82 0.57 0.72

Fig. 7 AUC-ROC Evaluation of Standalone Bidirectional LSTM

Fig. 8 AUC-ROC Evaluation of Random Forest

Fig. 9 AUC-ROC Evaluation of Standalone Transformer Model (Bert)

Fig. 10 AUC-ROC Evaluation of Hybrid

In this section, we present a detailed comparison between the
performance of the proposed hybrid model and three baseline
models: Standalone Bidirectional LSTM, Random Forest,
and Standalone Transformer Model. We evaluate their
performance using a range of metrics, including accuracy,
precision, recall, F1-score, and AUC-ROC.

61 AJCST Vol.12 No.2 July-December 2023

A Comprehensive Hybrid Model for Language-Independent Defect Prediction in Microservices Architecture

B. Standalone Bidirectional LSTM (Baseline 1)

The Standalone Bidirectional LSTM model attained an
accuracy of 0.77, with a precision of 0.55, recall of 0.64, F1-
score of 0.59, and an AUC-ROC of 0.73. Although it
exhibited a reasonable recall, its precision and F1-score were
comparatively lower, suggesting it could correctly identify
defective instances but had challenges in minimizing false
positives.

C. Random Forest (Baseline 2)

The Random Forest baseline achieved an accuracy of 0.65,
with a precision of 0.46, recall of 1.0, F1-score of 0.63, and
an AUC-ROC of 0.70. It’s worth noting that the recall value
of 1.0 implies flawless identification of defective instances,
but this came at the cost of a relatively lower precision,
indicating a higher incidence of false positives.

D. Standalone Transformer Model (Baseline 3)

The Standalone Transformer Model achieved an accuracy of
0.68, with a precision of 0.44, recall of 0.82, F1-score of 0.57,
and an AUC-ROC of 0.72. While it exhibited strong recall,
precision posed a challenge, leading to a comparatively lower
F1-score.

E. Proposed Hybrid Multi Input Model

The Proposed Hybrid Multi-Input Model, combining
Bidirectional lstm, BERT, Static Code Metrics, AST Tokens,
and Source Code Features, outperformed the baseline models
across various metrics. It accomplished an accuracy of 0.85,
precision of 0.82, recall of 0.88, F1-score of 0.85, and an
AUC-ROC of 0.90.

VII. DISCUSSION OF THE STUDY

The hybrid multi-input model we introduced surpassed the
baseline models across a range of metrics. Its strong F1-
score, indicative of balanced precision and recall,
underscores its proficiency in accurately categorizing
defective instances while minimizing false positives. The
incorporation of Bidirectional LSTM, BERT, Static Code
Metrics, AST Tokens, and Source Code Features enabled the
model to harness both structural and textual aspects of source
code, thereby enhancing its accuracy in defect prediction.

The significantly higher AUC-ROC and F1 score of the
proposed model suggests that it excelled in distinguishing
between defective and non-defective instances, showcasing
its robustness and potential for practical application.

(a)

62AJCST Vol.12 No.2 July-December 2023

Yashwant Kumar and Vinay Singh

(b)

Fig. 11 Cross-Project Defect Prediction

The proposed model for predicting defects exhibits language
and project independence. Its hybrid architecture, combining
linguistic features, static code metrics, and textual context
interpretation, enabled it to effectively predict defects across
diverse projects. The model’s ability to generalize and adapt
makes it suitable for application across various software
projects and domains. Show in above Figure 11, how hybrid
model trained on one project dataset can predict defect
different project data set, like model trained on log4j can
predict the defect of lucene-solr.. and poi-.. with f1 score of
.70 and .75.

Overall, the proposed hybrid model demonstrated the most
favourable combination of precision, accuracy, recall, AUC-
ROC and F1 Score making it a promising approach for defect
prediction and highlighting its potential to improve software
quality by accurately identifying and addressing defects
during the software development lifecycle.

The results indicate that the proposed hybrid model
architecture, which integrates TensorFlow and Keras for
Bidirectional LSTM and static code metrics, along with
PyTorch and Transformers for the BERT-based language
model, significantly improves defect prediction accuracy
compared to standalone approaches. The model’s ability to
capture both structural and textual aspects of source code
contributes to its enhanced performance.

VIII. CONCLUSION

In conclusion, this research successfully introduced a novel
hybrid machine learning model that combines Bidirectional
LSTM, BERT-based language models, and static code
metrics to predict defects in software. This approach
comprehensively addressed both structural and textual

aspects of source code, leading to improved defect prediction
accuracy compared to traditional methods. The study
underscores the capabilities of machine learning methods in
transforming defect prediction into a proactive and integral
component of software development, thereby enhancing
software quality assurance, user satisfaction, and developer
productivity. The insights gained from this research have the
potential to drive further advancements in the field, making
defect prediction a more robust and efficient process in the
ever-evolving landscape of software development.

IX. FUTURE WORK

While this research has achieved promising results, there are
several avenues for future exploration and refinement. One
potential direction is the investigation of techniques to
dynamically adapt the hybrid model to evolving software
projects and their specific defect patterns, enhancing its
generalizability across different domains and project
contexts. Moreover, delving into ensemble methods that
amalgamate forecasts from several models may bolster the
resilience and precision of defect prediction. Ongoing
advancements in defect prediction, coupled with the
continuously evolving domain of machine learning, have the
potential to transform software quality assurance and play a
role in producing top-tier software products within the ever-
changing software development environment.

REFERENCES

[1] L. Li and H. Leung, “Mining Static Code Metrics for a Robust

Prediction of Software Defect-Proneness,” in International Symposium
on Empirical Software Engineering and Measurement, pp. 207-214,
Sep. 2011. DOI: 10.1109/ESEM.2011.29.

[2] “ISO/IEC 9126-1:2001 - Software engineering - Product quality - Part
1: Quality model,” Accessed: Jul. 23, 2023. [Online]. Available:
https://www.iso.org/standard/22749.html.

63 AJCST Vol.12 No.2 July-December 2023

A Comprehensive Hybrid Model for Language-Independent Defect Prediction in Microservices Architecture

[3] G. Giray, K. E. Bennin, Ö. Köksal, Ö. Babur and B. Tekinerdogan, “On
the use of deep learning in software defect prediction,” Journal of
Systems and Software, Vol. 195, pp. 111537, Jan. 2023,
DOI: 10.1016/j.jss.2022.111537.

[4] C. L. Prabha and N. Shivakumar, “Software Defect Prediction Using
Machine Learning Techniques,” in 4th International Conference on
Trends in Electronics and Informatics (ICOEI) (48184), pp. 728-733,
Jun. 2020. DOI: 10.1109/ICOEI48184.2020.9142909.

[5] S. Motogna, D. Lupsa and I. Ciuciu, “An NLP Approach to Software
Quality Models Evaluation,” in On the Move to Meaningful Internet
Systems: OTM 2018 Workshops, C. Debruyne, H. Panetto, W. Guédria,
P. Bollen, I. Ciuciu, and R. Meersman, Eds., in Lecture Notes in
Computer Science, Cham: Springer International Publishing, pp. 207-
217, 2019. DOI: 10.1007/978-3-030-11683-5_24.

[6] S. Omri and C. Sinz, “Deep Learning for Software Defect Prediction:
A Survey,” in Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, in ICSEW’20, New
York, NY, USA: Association for Computing Machinery, pp. 209-214,
Sep. 2020. DOI: 10.1145/3387940.3391463.

[7] C. Mendez et al., “Open source barriers to entry, revisited: a
sociotechnical perspective,” in Proceedings of the 40th International
Conference on Software Engineering, in ICSE ’18, New York, NY,
USA: Association for Computing Machinery, pp. 1004-1015, May
2018. DOI: 10.1145/3180155.3180241.

[8] A. Alami, M. L. Cohn and A. Wasowski, “Why does code review work
for open source software communities?,” in Proceedings of the 41st
International Conference on Software Engineering, in ICSE ’19,
Montreal, Quebec, Canada: IEEE Press, pp. 1073-1083, May 2019.
DOI: 10.1109/ICSE.2019.00111.

[9] T. Menzies, et al., “Local versus Global Lessons for Defect Prediction
and Effort Estimation,” IEEE Transactions on Software Engineering,
Vol. 39, No. 6, pp. 822-834, Jun. 2013. DOI: 10.1109/TSE.2012.83.

[10] I. Ibarguren, J. M. Pérez, J. Mugerza, D. Rodriguez and R. Harrison,
“The Consolidated Tree Construction algorithm in imbalanced defect
prediction datasets,” in IEEE Congress on Evolutionary Computation
(CEC), pp. 2656-2660, Jun. 2017. DOI: 10.1109/CEC.2017.7969629.

[11] X. Y. Jing, F. Wu, X. Dong and B. Xu, “An Improved SDA Based
Defect Prediction Framework for Both Within-Project and Cross-
Project Class-Imbalance Problems,” IEEE Transactions on Software
Engineering, Vol. 43, No. 4, pp. 321-339, Apr. 2017, DOI:
10.1109/TSE.2016.2597849.

[12] A. Okutan and O. T. Yıldız, “Software defect prediction using
Bayesian networks,” Empir Software Eng., Vol. 19, No. 1, pp. 154-181,
Feb. 2014, DOI: 10.1007/s10664-012-9218-8.

[13] C. Nalini and T. Murali Krishna, “An Efficient Software Defect
Prediction Model Using Neuro Evalution Algorithm based on Genetic
Algorithm,” in Second International Conference on Inventive Research
in Computing Applications (ICIRCA), pp. 135-138, Jul. 2020. DOI:
10.1109/ICIRCA48905.2020.9182869.

[14] W. Zheng et al., “The impact factors on the performance of machine
learning-based vulnerability detection: A comparative study,” Journal
of Systems and Software, Vol. 168, pp. 110659, Oct. 2020. DOI:
10.1016/j.jss.2020.110659.

[15] C. Lang, J. Li and T. Kobayashi, “Software Defect Prediction via
Multi-Channel Convolutional Neural Network,” in IEEE 21st
International Conference on Software Quality, Reliability and Security
(QRS), pp. 543-554, Dec. 2021. DOI: 10.1109/QRS54544.2021.00065.

[16] R. B. Bahaweres, D. Jumral, I. Hermadi, A. I. Suroso and Y. Arkeman,
“Hybrid Software Defect Prediction Based on LSTM (Long Short
Term Memory) and Word Embedding,” in 2nd International
Conference On Smart Cities, Automation & Intelligent Computing
Systems (ICON-SONICS), pp. 70-75, Oct. 2021. DOI: 10.1109/ICON-
SONICS53103.2021.9617182.

[17] A. Lear, et al., “Ensemble Machine Learning Model for Software
Defect Prediction,” Vol. 2, pp. 11-21, Jul. 2021.

[18] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction
using ensemble learning on selected features,” Information and
Software Technology, Vol. 58, pp. 388-402, Feb. 2015, DOI: 10.1016/j.
infsof.2014.07.005.

[19] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software
defect prediction,” Neurocomputing, Vol. 385, pp. 100-110, Apr. 2020,
DOI: 10.1016/j.neucom.2019.11.067.

[20] M. J. Siers and M. Z. Islam, “Software defect prediction using a cost
sensitive decision forest and voting, and a potential solution to the class

imbalance problem,” Information Systems, Vol. 51, pp. 62-71, Jul.
2015. DOI: 10.1016/j.is.2015.02.006.

[21] C. Jin and S. W. Jin, “Prediction approach of software fault-proneness
based on hybrid artificial neural network and quantum particle swarm
optimization,” Applied Soft Computing, Vol. 35, pp. 717-725,
Oct. 2015, DOI: 10.1016/j.asoc.2015.07.006.

[22] P. He, B. Li, X. Liu, J. Chen and Y. Ma, “An empirical study on
software defect prediction with a simplified metric set,” Information
and Software Technology, Vol. 59, pp. 170-190, Mar. 2015.
DOI: 10.1016/j.infsof.2014.11.006.

[23] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduction
in cross-company software defects prediction,” Information and
Software Technology, Vol. 62, pp. 67-77, Jun. 2015.
DOI: 10.1016/j.infsof.2015.01.014.

[24] T. Shailesh, A. Nayak, and D. Prasad, “Performance Prediction of
Configurable softwares using Machine learning approach,” in 4th
International Conference on Applied and Theoretical Computing and
Communication Technology (iCATccT), IEEE, Mangalore, India,
pp. 7-10, Sep. 2018. DOI: 10.1109/iCATccT44854.2018.9001957.

[25] R. Malhotra, L. Bahl, S. Sehgal, and P. Priya, “Empirical comparison
of machine learning algorithms for bug prediction in open source
software,” in International Conference on Big Data Analytics and
Computational Intelligence (ICBDAC), pp. 40-45, Mar. 2017.
DOI: 10.1109/ICBDACI.2017.8070806.

[26] H. D. Tran, L. T. M. Hanh, and N. T. Binh, “Combining feature
selection, feature learning and ensemble learning for software fault
prediction,” in 11th International Conference on Knowledge and
Systems Engineering (KSE), pp. 1-8, Oct. 2019. DOI: 10.1109/KSE.
2019.8919292.

[27] A. Souri, A. S. Mohammed, M. Yousif Potrus, M. H. Malik, F. Safara,
and M. Hosseinzadeh, “Formal Verification of a Hybrid Machine
Learning-Based Fault Prediction Model in Internet of Things
Applications,” IEEE Access, Vol. 8, pp. 23863-23874, 2020,
DOI: 10.1109/ACCESS.2020.2967629.

[28] E. Elahi, S. Kanwal, and A. N. Asif, “A new Ensemble approach for
Software Fault Prediction,” in 17th International Bhurban Conference
on Applied Sciences and Technology (IBCAST), pp. 407-412, Jan.
2020. DOI: 10.1109/IBCAST47879.2020.9044596.

[29] J. Ge, J. Liu, and W. Liu, “Comparative Study on Defect Prediction
Algorithms of Supervised Learning Software Based on Imbalanced
Classification Data Sets,” in 19th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD),
pp. 399-406, Jun. 2018. DOI: 10.1109/SNPD.2018.8441143.

[30] Z. Xu et al., “A comprehensive comparative study of clustering-based
unsupervised defect prediction models,” Journal of Systems and
Software, Vol. 172, pp. 110862, Feb. 2021, DOI: 10.1016/j.jss.2020.
110862.

[31] V. Walunj, G. Gharibi, R. Alanazi, and Y. Lee, “Defect prediction using
deep learning with Network Portrait Divergence for software
evolution,” Empir Software Eng., Vol. 27, No. 5, pp. 118, Jun. 2022,
DOI: 10.1007/s10664-022-10147-0.

[32] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A Semantic LSTM Model
for Software Defect Prediction,” IEEE Access, Vol. 7,
pp. 83812-83824, 2019, DOI: 10.1109/ACCESS.2019.2925313.

[33] H. Alsolai and M. Roper, “A Systematic Review of Feature Selection
Techniques in Software Quality Prediction,” in International
Conference on Electrical and Computing Technologies and
Applications (ICECTA), pp. 1-5, Nov. 2019. DOI: 10.1109/ICECTA48
151.2019.8959566.

[34] A. Kaur, K. Kaur, and H. Kaur, “An investigation of the accuracy of
code and process metrics for defect prediction of mobile applications,”
in 4th International Conference on Reliability, Infocom Technologies
and Optimization (ICRITO) (Trends and Future Directions), pp. 1-6,
Sep. 2015. DOI: 10.1109/ICRITO.2015.7359220.

[35] P. M. Pardalos, V. Rasskazova, and M. N. Vrahatis, Eds., Black Box
Optimization, Machine Learning, and No-Free Lunch Theorems, in
Springer Optimization and Its Applications, Cham: Springer
International Publishing, Vol. 170, 2021. DOI: 10.1007/978-3-030-
66515-9.

[36] T. Mori and N. Uchihira, “Balancing the trade-off between accuracy
and interpretability in software defect prediction,” Empir Software
Eng., Vol. 24, No. 2, pp. 779-825, Apr. 2019, DOI: 10.1007/s10664-
018-9638-1.

64AJCST Vol.12 No.2 July-December 2023

Yashwant Kumar and Vinay Singh

[37] E. A. Felix and S. P. Lee, “Integrated Approach to Software Defect
Prediction,” IEEE Access, Vol. 5, pp. 21524-21547, 2017,
DOI: 10.1109/ACCESS.2017.2759180.

[38] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An Empirical Study on
Software Defect Prediction with a Simplified Metric Set,” Information
and Software Technology, Vol. 59, pp. 170-190, Mar. 2015,
DOI: 10.1016/j.infsof.2014.11.006.

[39] Meiliana, S. Karim, H. L. H. S. Warnars, F. L. Gaol, E. Abdurachman,
and B. Soewito, “Software Metrics for Fault Prediction Using Machine
Learning Approaches: A Literature Review with PROMISE Repository
Dataset,” in IEEE International Conference on Cybernetics and

Computational Intelligence (CyberneticsCom), pp. 19-23, Nov. 2017.
DOI: 10.1109/CYBERNETICSCOM.2017.8311708.

[40] J. M. Catherine and S. Djodilatchoumy, “Multi-Layer Perceptron
Neural Network with Feature Selection for Software Defect
Prediction,” in 2nd International Conference on Intelligent
Engineering and Management (ICIEM), pp. 228-232 Apr. 2021.
DOI: 10.1109/ICIEM51511.2021.9445350.

[41] “PROMISE-backup/bug-data at master · feiwww/PROMISE-backup,”
GitHub. Accessed: Dec. 25, 2021. [Online]. Available: https://github.
com/feiwww/PROMISE-backup.

65 AJCST Vol.12 No.2 July-December 2023

A Comprehensive Hybrid Model for Language-Independent Defect Prediction in Microservices Architecture

	A. Comparison with Baseline Models

