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Abstract - The transformation of software development from 
monolithic frameworks to microservices-based architectures, 
focusing on the challenges of creating a unified defect prediction 
model that spans various programming languages in practice of 
automating integration of code modification into a single 
codebase. It proposes a hybrid machine learning approach to 
enhance defect prediction accuracy by integrating different data 
sources and algorithms. The goal is to create a language and 
project-independent model. The hybrid model combines Bi-
Directional LSTM (BiD-LSTM) networks and Attention 
mechanisms, static code metrics, and BERT-based language 
models. BiLSTM-Attention captures temporal dependencies 
within Abstract Syntax Trees (ASTs), static code metrics provide 
insights into software complexity, and BERT interprets textual 
context for a holistic understanding of code snippets. The 
research methodology involves quantitative techniques, starting 
with a literature review to establish the theoretical foundation. 
An empirical study follows, encompassing data gathering, 
feature crafting and pre-processing, model building, training 
and evaluation, validation and analysis and conclusions. The 
research’s insights aim to improve defect prediction techniques, 
contributing to software engineering’s pursuit of better quality 
and reliability. 
Keywords: Software Defect Prediction, Machine Learning 
Approach, Predictive Accuracy, Hybrid Model, BiD-LSTM, 
BERT, ASTs 

I. INTRODUCTION

Software defect prediction model is an artefact of application 
of statistical and machine learning techniques. Defect 
prediction is an essential task during software development 
life cycle. Early detection of faults saves money and time for 
the companies. It is aimed at identifying the code which has 
a potential bug that helps to correct it during the development 
process itself.  

The defect prediction model helps the developer and project 
managers to find the likelihood of defects in specific 
modules, codes, classes, components, processes or files. By 
early detection of defects, resource allocation can be 
efficiently managed. It also helps in prioritising test cases and 
ensures the software’s quality. The implementation of best AI 
model in CICD pipeline is must for identifying the early bugs 
before successful deployment of any modules.  

A. Background and Motivation

The background and motivation for creating a good model by 
utilizing Machine Learning methods for anticipating 
software flaws is to augment software development 
processes, reduce costs, enhance software quality, and deliver 
more reliable and robust software products [1]. Let’s explore 
the key reasons behind this initiative. 

1. Quality Improvement: Defect anticipating models are
designed to spot possible defects or errors in software code at
an early stage of the development process. By anticipating
defects prior to their deployment and integration into the
larger system, developers can take pre-emptive measures to
address them, resulting in improved code quality and a
reduced chance of defects making their way into the
production environment [2].

2. Cost Reduction: Fixing defects in software can be costly,
especially if they are detected late in the development
lifecycle or, worse, after the software has been deployed to
production. Defect prediction models help catch issues early,
saving both time and resources required for bug fixing and
maintenance.

3. Enhancing Developer Productivity: When developers have 
insights into potential problem areas in the code, they can
focus their efforts on critical sections, optimize their work,
and prioritize bug-fixing tasks more efficiently.

4. Risk Mitigation: Predicting defects can help project
managers and stakeholders assess and manage project risks.
It allows for better planning and resource allocation to
address potential quality issues.

5. Continuous Integration and Delivery (CICD) Pipeline
Improvement: Defect prediction models can be integrated
into the CI/CD pipeline, allowing for automated checks
during the build and deployment processes. This integration
ensures that the software meets predefined quality criteria
before being released. That aids in DevOps practice.
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6. Software Security Enhancement: Certain defects can lead 
to security vulnerabilities, making the software susceptible to 
attacks. Defect prediction models can help identify such 
vulnerabilities early on and support the development of more 
secure software. 
 
7. Data-Driven Decision Making: Machine Learning models, 
when trained on historical software data, can identify patterns 
and trends that human developers might miss. These models 
provide an additional data-driven perspective to aid in 
decision-making. 
 
8. Benchmarking and Comparative Analysis: Defect 
prediction models can be used to benchmark different 
projects or teams based on their defect-proneness. This 
enables organizations to compare the quality of various 
projects and identify areas for improvement. 
 
9. Research and Innovation: The creation of good defect 
prediction models using Machine Learning also fuels 
exploration and advancement in the realm of software 
engineering and data science. Researchers continuously 
explore new approaches, algorithms, and data sources to 
enhance  the effectiveness  and accuracy of the models [3]. 
 
Machine learning (ML) has risen as a potential tool across 
diverse domains, including software engineering, due to its 
ability to analyse large volumes of data, understand patterns, 
and do predictions [4]. In last few years, ML techniques  had 
being applied to defect guessing with promising results. By 
leveraging historical data on software defects and associated 
code attributes, machine learning models can learn patterns 
and make predictions about the likelihood of defects in new 
or modified code. By leveraging ML techniques to build 
reliable and accurate models to anticipate software issues, 
software development teams can significantly enhance their 
development processes, reduce the occurrence of defects, 
improve software quality, and ultimately deliver better 
software products to users. 
 
The scope of creating a source code-based model for 
predicting software defects and other static code metrics is 
vast and holds significant potential for improving software 
quality and development practices [5]. The NLP approach 
aims to leverage the natural language patterns present in 
source code, comments, and documentation to enhance 
defect prediction accuracy. The model aims to extract 
meaningful information from this unstructured text and use it 
as input for defect prediction tasks.  
 
B. Problem Definition and Objective 
 
The problem at hand is the shift in software development 
from single-language frameworks to multi-language 
microservices architecture. Microservices involve breaking 
down complex applications into smaller, independent 
services, each serving a specific business function and 
communicating through Web APIs. These services can be 
written in different programming languages like Java, PHP, 

Python, C# and JavaScript. The challenge lies in developing 
a unified software defect predictor model that can be used 
across these different programming languages within a CICD 
pipeline. 
 
The objective was to create a proposed Hybrid model that 
utilizes Abstract Syntax Tree (AST), static code metric and 
source code from various cross-project and cross-version 
datasets as input features. This model was tested and 
demonstrated superior performance compared to alternatives. 
 
C. Key Aspects of the Scope 
 
1. Data Collection and Preparation: Collecting labelled 
datasets of source code and defects for training and 
evaluating the NLP model. Ensuring the data is representative 
of different software projects and domains. 
 
2. Textual Data Analysis: The model will focus on processing 
and analysing textual data from various sources, such as 
source code, comments and documentation. 
 
3. Feature Extraction: NLP techniques is applied to extract 
meaningful pattern from the textual data. This may include 
keyword extraction, sentiment analysis, topic modelling, and 
semantic analysis. [6]. The technique will also be applied to 
extract relevant features from source code, such as code 
tokens, API usage patterns, variable names, and comment 
sentiments, to be used as inputs to the NLP model. 
 
4. Model Development: The model DL algorithms to spot the 
likelihood of issues based on the extracted features from the 
textual data, Designing and training the NLP model, which 
could also involve approaches like recurrent neural networks 
(RNNs), LSTM, transformer-based models like BERT. 
 
5. Code Representation: Exploring methods to represent 
source code and other static code metrics in a format suitable 
for NLP models, such as embedding or tokenization 
techniques. 
 
6. Model Evaluation: Performing thorough assessments to 
measure the effectiveness of the NLP-driven defect 
prediction model, utilizing metrics such as F1-score, 
precision, accuracy, recall and the AUC-ROC. 
 
7. Generalization: The NLP-based model would be designed 
to integrate seamlessly with existing defect prediction 
systems or software development workflows. Assessing the 
generalization capabilities of the model by testing it on 
unseen datasets from different projects to determine its 
applicability beyond a specific context. 
 
D. Proposed Model at a Glance 
 
The proposed model is a Multi-Input Hybrid Model designed 
for accurate defect prediction in modern software 
engineering. It combines Source Code Metrics, Abstract 
Syntax Tree (AST) Tokens, and Bidirectional Encoder 
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Representations from Transformers (BERT) to enhance 
prediction accuracy. This model aims to depicts a detailed 
examination of its structure and components, with the goal of 
surpassing traditional defect prediction techniques by 
leveraging the contextual understanding capabilities of BERT 
for precision and robustness in defect prediction. 
 
The upcoming sections will delve into the related work 
followed by detailed examination of proposed model’s each 
component, explaining their importance and how they 
contribute to the model’s main goal. The integration process 
will be described step by step, illustrating how these different 
elements work together to create a comprehensive and 
unified framework. Additionally, the article will discuss the 
potential advantages and real-world implications of the 
Multi-Input Hybrid Model, emphasizing its ability to 
significantly improve defect prediction accuracy. 
 
In essence, the journey embarked upon in this article lays the 
groundwork for a paradigm shift in the realm of defect 
detection. By embracing the fusion of diverse data sources 
and cutting-edge technologies, the proposed model seeks to 
reshape the landscape of software quality assurance, offering 
an innovative and powerful tool for identifying defects and 
enhancing software reliability.  
 

II. REVIEW OF LITERATURE 
 
To improve defect prediction efficiency, researchers and 
practitioners continue to explore and develop more advanced 
and automated techniques, such as machine learning-based 
models, data mining, and AI-driven methods that can handle 
large-scale codebases and provide more accurate predictions 
with reduced human intervention as mentioned by Mendez, 
Padala and Burnett et al., [7] [8]. 
 
A. Some ML Algorithms 
 
1. Statistical Techniques (Regression Models): Menzies; 
Butcher; Cok and Marcus et al. explained Regression models 
that are frequently employed in defect prediction within 
software development. These models, includes logistic 
regression, multiple linear regression and Poisson regression 
were examined in connection to software metrics and the 
presence of defects. Common predictors used in these models 
encompass code complexity, code churn, code size, and 
developer experience [9]. 
 
2. Decision Trees: Ibarguren, Perez, Mugerza, Rodriguezx, 
Harrison et al. used Decision Trees (DT) are hierarchical 
models that iteratively divide the data using the most 
influential predictors. They are commonly used in defect 
prediction due to their simplicity and interpretability. 
Decision trees exhibit versatility in software defect prediction 
tasks since they can accommodate both categorical and 
numerical data [10] [11]. 
 
3. Naive Bayes Classifier: Ahmet Okutan and Olcay Taner 
Yıldız explained Naive Bayes classifier which assumes 

feature independence for probabilistic classification. It has 
been applied to software defect prediction, where the features 
represent software metrics and the class labels represent 
defective or non-defective modules [12]. 
 
4. Neural Networks: Giray, Kwabena, Köksal, Babur, 
Tekinerdogan referred Neural networks and used in software 
defect prediction, addressing intricate metric-defect 
relationships and large dataset learning. Techniques like 
feedforward neural networks or recurrent neural networks 
have been explored for this purpose [3]. 
 
5. Genetic Algorithms: Nalini and Krishna used Genetic 
algorithms to optimize defect prediction models by seeking 
ideal feature combinations and model parameters for 
performance maximization [13]. These software defect 
prediction methods have undergone thorough extensively 
studied and have demonstrated potential benefits in 
numerous empirical investigations. The effectiveness of 
these methods may vary depending on factors such as project 
context, data quality, and specific defect prediction tasks 
across projects and languages. 
 
B. Review of Deep Learning Related Studies on SDP 
 
Zheng, Gao, Fengyu, Xun, Liu, Xiang Chen study assesses 
different deep learning models, including Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory 
(LSTM) networks, for software defect prediction. The 
authors analyse these models’ real-world dataset performance 
and offer insights into their respective pros and cons [14]. 
 
Lang, Li and Kobayashi introduce a streamlined 
Convolutional Neural Network (CNN) for software defect 
prediction and conduct an empirical study across various 
software projects. They compare their CNN model to 
conventional machine learning methods, showcasing its 
effectiveness in defect prediction tasks [15]. 
 
The paper by Bahaweres, Jumral and Hermadi et al., 
introduces a hybrid strategy, fusing Long Short-Term 
Memory (LSTM) neural networks with conventional 
machine learning techniques for software defect prediction. 
It demonstrates that this hybrid model can enhance prediction 
accuracy, surpassing individual methods [16]. 
 
Dada, Oyewola, Joseph and Dauda suggest an ensemble 
method that merges several machine learning algorithms like 
Random Forest, SVM, and Gradient Boosting for open-
source software defect prediction. They assess the ensemble’s 
performance across diverse datasets and analyse its 
effectiveness [17]. 
 
Giray et al., in their work, researchers present a cost-sensitive 
Convolutional Neural Network (CNN) tailored for software 
defect prediction. They tackle the challenge of imbalanced 
data in defect prediction and demonstrate that the cost-
sensitive CNN enhances predictive performance on 
imbalanced datasets [3]. 
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Laradji, Alshayeb and Ghouti questioned the standalone 
effectiveness of various algorithms in software defect 
prediction, including Decision Trees, Artificial Neural 
Networks and Bayesian methods, and they noted that these 
methods performed sub-optimally with skewed and 
redundant defect datasets and deteriorated further when 
datasets contained incomplete or irrelevant features. Support 
Vector Machines (SVMs) often exhibit a bias towards the 
majority class, leading to high false negative rates due to the 
neglect of the minority class. To mitigate these issues, 
ensemble learning models are recommended as effective 
solutions [18]. 
 
Lei Qiao, Xuesong Li, Qasim Umer and Ping Guo discussed 
various Machine Learning Methods of Defect Prediction 
Techniques and its shortcomings. The current performance 
metrics, such as mean square error and squared correlation 
coefficient, require notable enhancements. This paper 
presents a deep learning-driven defect prediction model using 
regression to estimate defect counts in a module. The 
proposed method is evaluated for effectiveness in 
comparison to three state-of-the-art approaches Support 
Vector, Decision Tree Regression and FSVR [19]. 
 
Siers and Islam proposed technique was empirically assessed 
using six classifier algorithms on six widely used clean 
software defect prediction datasets. This cost-sensitive 
learning model was seen as a way to save money for software 
development groups, emphasizing the importance of 
avoiding false negative predictions, even if it means having 
some false positives. The study also explored a method for 
integrating oversampling into the Cost Sensitive Forest [20]. 
 
Cong and Shu-Wei applies a hybrid of Artificial Neural 
Network (ANN) and Quantum Particle Swarm Optimization 
(QPSO) for software fault-proneness prediction. QPSO 
reduces dimensionality, while ANN classifies software 
modules as fault-prone or not. The combination of ANN and 
QPSO results in an effective software fault-proneness 
prediction approach [21]. 
 
He, Li, Liu et al., tallied metric occurrences in each 
prediction model and identified the top-k representative 
metrics as a universal feature subset for defect prediction 
across projects, making it suitable for projects lacking 
sufficient historical data. With more extensive training, the 
top-k feature subset becomes increasingly versatile [22]. 
 
To mitigate the unavailability of local historical data, Chen, 
Fang, Shang and Tang have embraced Cross-company defect 
prediction (CCDP). The approach involves preprocessing 
training data from external sources, re-weighting using a 
transfer method with data gravitation, and combining it with 
a small portion of local data to build prediction models [23]. 
 
Today’s software industry often involves complex, 
configurable software, with a growing number of features 
leading to a vast configuration space. To understand the 
impact of various configurations on system performance, 

predictive models are employed. Shailesh, Nayak and Prasad 
in their paper suggested using a Neural Network model along 
with statistical techniques to predict system performance 
based on input configurations [24]. 
 
The study by Malhotra, Bahl, Sehgal and Priya in their paper 
compare 14 Machine Learning techniques for defect 
prediction using 9 open-source datasets in Weka and 
statistically analyses the models with SPSS. Results indicate 
Single Layer Perceptron as the most effective technique [25]. 
 
The paper by Tran, Hanh and Binh explores a method that 
combines feature selection and ensemble learning to tackle 
feature redundancy and class imbalance in software fault 
prediction. Additionally, it employs a deep learning model to 
enhance fault prediction model performance. The approach is 
tested on 12 NASA datasets [26]. 
 
The growing complexity of IoT applications poses a 
challenge for fault prediction in human-device interactions. 
Souri, Mohammed and Potrus introduce a hybrid fault 
prediction model using MLP and PSO, verified through 
behavioural modelling [27]. 
 
Elahi, Kanwal and Asif examined various ensemble methods 
to enhance prediction model performance and benchmarked 
model averaging using methods like voting and stacking [28]. 
 
Ge et al., and Xu et al., presents performance of SVM and 
RF in defect prediction was assessed, emphasizing RF’s 
effectiveness in managing noisy data. Walunj et al., Liang, 
Yu, Jiang, and Xie Presented an innovative deep learning 
method employing Long Short-Term Memory (LSTM) 
networks for defect prediction based on time series data [29] 
[30] [31] [32]. 
 
Alsolai and Roper examined how different feature selection 
techniques, such as Relief-F and Chi-Square, influence 
model accuracy in defect prediction [34]. The proposal 
suggests a hybrid method that combines static code metrics 
and process metrics to enhance the effectiveness of feature 
discrimination [33]. 
 
Pardalos, Rasskazova, and Vrahatis introduced LIME, a 
model-agnostic method for explaining predictions made by 
black-box machine learning models in the realm of defect 
prediction  [35]. Mori and Uchihira created a rule-based 
classifier to offer clear and understandable defect predictions 
[36]. 
 
C. Research Gap 
 
The field of software defect prediction through machine 
learning has seen significant research, encompassing diverse 
methods. Traditional machine learning algorithms and 
advanced models like CNNs and LSTMs have been explored.  
 
Ensemble and cost-sensitive techniques address specific 
challenges. With the field’s evolution, we can anticipate the 
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exploration of more advanced methods and larger datasets to 
enhance software defect prediction models’ accuracy and 
applicability. 
 
After conducting an extensive literature review, we have 
identified multiple research gaps and potential avenues for 
future exploration in the application of machine learning for 
software defect prediction. 
 
1. Cross-Domain Transferability of Models: While the 
existing studies demonstrate promising results within 
specific domains, there is a lack of research on the 
transferability of defect prediction models across different 
industries and project types. Future research should focus on 
evaluating the effectiveness of models trained on one domain 
to predict defects in unrelated domains. 
 
2. Real-Time Defect Prediction: Most studies focus on 
predicting defects on historical data, but there is a growing 
need for real-time defect prediction during software 
development. Investigating the feasibility and performance 
of machine learning models in a real-time setting can 
significantly impact software quality assurance practices. 
 
3. Addressing Longitudinal Aspects: To better understand the 
evolution of software projects, it is essential to explore 
longitudinal defect prediction, considering how models adapt 
to changing project dynamics over time. 
 
4. Integrating Traditional and Machine Learning 
Approaches: While machine learning techniques show 
promise, combining them with traditional defect prediction 
methods, such as code reviews and inspections, could lead to 
more robust and effective prediction systems. 
 
5. Interpretability of Complex Models: With the growing 
popularity of deep learning models in defect prediction, it 
becomes crucial to create methods that provide insights into 
intricate model decisions, allowing stakeholders to have 
confidence in and comprehend the predictions. By presenting 
these research gaps, the article sets the stage for research to 
address important challenges and advancement in the field of 
software quality by predicting defects using proposed 
machine learning techniques. 

 
III. METHODOLOGY 

 
This section is a crucial part of the article, as it outlines the 
overall strategy and methodology adopted to conduct the 
study. This section provides a detailed explanation of the 
steps that is followed to carry out the research, ensuring 
transparency and replicability. Below is an elaboration of the 
contents for this section. 
 
A. Data Collection and Preprocessing 
 
Data gathering and pre-processing involved, collection of 
dataset that includes source code files, static code metrics, 

and corresponding labels indicating whether each module is 
defective or not (binary classification task). The dataset had 
a sufficient number of samples to build an effective predictive 
model. The dataset used for training and evaluation in the 
Cross-Language Software Defect Predictor project was 
collected from various open-source repositories on platforms 
like GitHub, PROMISE-backup-master, Bitbucket, or 
GitLab. These repositories contain code written in different 
programming languages, including but not limited to Java, 
JavaScript, C++, Python, and C-Sharp. The dataset was 
curated to include projects with labeled information about 
defective and defect-free code examples. 
 
B. Data Preprocessing 
 
The raw dataset obtained from the repositories underwent 
several pre-processing steps to prepare it for training and 
evaluation. The purpose of processing is to construct a multi-
input neural network (Hybrid Model) that combines AST 
embeddings, static code metrics, and BERT embeddings for 
Source code with Bidirectional LSTM (BiLSTM) and 
Attention, The Keras, and Transformer’s functional API were 
used. This architecture allowed to handle multiple inputs and 
build complex models with ease. The pre-processing steps 
include, 
 
1. Language Identification: Since the repositories contain 
code from multiple programming languages, an initial 
language identification step was performed to categorize 
each file into its respective programming language using 
language-specific heuristics. 
 
2. Lexical Analysis: After language identification next step 
was lexical analysis, also known as lexing. In this step, the 
source code was read character by character, and sequences 
of characters were identified as tokens based on predefined 
rules and grammar files. These rules are defined using regular 
expressions or finite state machines. The code files were 
tokenized using the language-specific lexer generated by 
ANTLR for each supported programming language. This 
process involved creating the custom code in Java for 
converting the source code into a stream of language-specific 
tokens, such as keywords, identifiers, literals, and operators. 
 
3. AST Token Generation: The token streams were then 
passed through the corresponding language-specific parser 
generated by ANTLR to construct Abstract Syntax Trees 
(ASTs) or parse trees representing the hierarchical structure 
of the code. 
 
Just like natural or formal languages, programming 
languages exhibit linguistic features such as syntax, 
semantics, pragmatics, and grammatical rules. Custom code 
is employed to utilize the language recognition tool ANTLR 
for transforming source code into a sequence of language-
neutral tokens, as demonstrated below. 
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TABLE I EXTRACT LANGUAGE NEUTRAL TOKENS FROM THE SOURCE CODE OF JAVA FILE 
Package Declaration, annotation, import Declaration, type Declaration, class Or Interface Modifier, class Declaration, 
enum Declaration, interface Declaration, annotation Type Declaration, modifier, class Or Interface Modifier, variable 
Modifier, type Parameters, type Type, type List, class Body, type Bound, enum Constants, enum Body Declarations, 
interface Body, member Declaration, method Declaration, method Body, type Type Or Void, generic Method Declaration, 
generic Constructor Declaration, constructor Declaration, field Declaration, const Declaration etc 

 
From the generated ASTs Tokens, various language-
independent features patterns were extracted automatically. 
These features may have included control flow information, 
variable usage patterns, function call patterns, and many 
more. The aim was to create a uniform set of tokens that could 
be used for defect prediction across different programming 
languages. Further these AST tokens have been converted 
into language-independent AST embeddings using deep 
learning. 
 
4. Static Code Feature Selection: When developing models 
for software defect, it’s essential to carefully select relevant 
and well-established metrics based on empirical evidence and 

prior research [37] [38]. The choice of metrics for predicting 
bugs in a dataset depends on various features, including the 
nature of the data, the characteristics of the software project, 
and the machine learning or statistical techniques being used. 
It’s recommended to perform feature selection and 
experimentation to identify the most relevant metrics for 
predicting bugs in dataset. Machine learning techniques such 
as decision trees, logistic regression, random forests, and 
SVMs were often tried for this purpose.  
 
However, some commonly used metrics [39] that have been 
used here and shown predictive power for bug prediction in 
Modules are listed below. 

 
TABLE II  LIST OF ADOPTED SOURCE CODE STATIC METRICS 

Metric 
Abbreviation Full Form Descriptions with Rationale for Selection 

WMC Weighted Methods per 
Class 

A measure of the complexity of the class, calculated as the sum of complexity 
weights of all methods in the class. (High complexity classes may be more error-
prone.) 

DIT Depth of Inheritance 
Tree 

The number of levels in the class’s inheritance hierarchy. (Deep inheritance 
hierarchies might increase complexity and lead to bugs.) 

NOC Number of Children The number of classes that inherit directly from this class. (Classes with many 
direct subclasses may inherit defects.) 

CBO Coupling Between 
Objects 

The number of other classes to which this class is coupled. (High coupling between 
classes might indicate potential bug propagation.) 

RFC Response for a Class The number of methods in the class that can be invoked in response to a message. 
(Classes with high RFC might be more error-prone.) 

LCOM Lack of Cohesion in 
Methods 

A measure of the cohesion among methods in the class. (Low cohesion could lead to 
more bugs.) 

CA Afferent Couplings The number of other classes that depend on this class. (High afferent couplings may 
suggest higher potential for defects.) 

CE Efferent Couplings The number of other classes that this class depends on. (High efferent couplings 
might indicate potential bug propagation.) 

NPM Number of Public 
Methods 

The number of public methods in the class. (The number of public methods may 
influence defect-proneness.) 

LOC Lines of Code The total number of lines of code in the class. (Larger classes may have more 
defects.) 

DAM Data Access Metric A measure of data access complexity in the class. (High DAM may indicate more 
complex data access and potential bugs.) 

MOA Measure of Aggregation The number of data members in the class. (High MOA might indicate more complex 
classes and higher defect-proneness.) 

MFA Measure of Functional 
Abstraction 

A measure of functional abstraction based on the methods in the class. (High MFA 
might indicate more complex classes and higher defect-proneness.) 

CAM Cohesion Among 
Methods of Class 

A measure of cohesion among methods. (High CAM might indicate more cohesive 
classes and lower defect-proneness.) 

IC Inheritance Coupling The number of parent classes that the class inherits from. (High IC may suggest 
potential bug propagation.) 

CBM Coupling Between 
Methods 

The number of method calls to other methods within the class. (High CBM might 
indicate higher inter-method dependencies and potential bug propagation.) 

AMC Average Method 
Complexity 

The average complexity of methods in the class. (High AMC might indicate more 
complex methods and potential bugs.) 

MAX_CC Maximum McCabe 
Cyclomatic Complexity 

The highest complexity value among methods in the class. (Classes with high 
Cyclomatic complexity might be more error-prone.) 

AVG_CC Average McCabe 
Cyclomatic Complexity 

The average complexity value of methods in the class. (High average Cyclomatic 
complexity might indicate higher defect-proneness.) 
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The “Number of Children (NOC)” metric holds significance 
for bug prediction and software maintenance, as it indicates 
the classes directly inheriting from a specific class, 
potentially leading to defects due to complexities and 
dependencies. LCOM measures cohesion within a class by 
counting method pairs not sharing instance variables, with 
higher values suggesting lower cohesion and a potential for 

defects. LCOM3 is a less commonly used variation. The 
study created a dataset with AST embeddings, static code 
metrics, and tokenized source code as inputs and bug labels 
as outputs. The hybrid model processes AST embeddings and 
static code metrics separately, combines BERT embeddings, 
and uses dense layers for defect prediction. The final sample 
representation of data set looked like below. 

 
TABLE III SNAPSHOT REPRESENTATION OF DATASET 

Package Identifier Static Code Metrics AST Tokens Source Code Tokens bug 

org.apache.tools.ant.Ant 
ClassLoader 

[{‘wmc’: 49, 
  ‘dit’: 2, 
  ‘noc’: 1, 

  ‘cbo’: 24, 
  ‘rfc’: 126, 

  ‘lcom’: 926, 
  ‘ca’: 18, 
  ‘ce’: 8, 

  ‘npm’: 31, 
  ‘lcom3’: 

0.883333333, 
  ‘loc’: 1512, 
  ‘dam’: 0.7, 
  ‘moa’: 1, 

  ‘mfa’: 
0.441558442, 

  ‘cam’: 
0.163461538, 

  ‘ic’: 1, 
  ‘cbm’: 5, 

  ‘amc’: 
29.44897959, 

  ‘max_cc’: 12, 
  ‘avg_cc’: 1.9796} 

compilationUnit,package 
Declaration, qualifiedNa... 

package 
org.apache.tools.ant; 
\nimport java.io.... 

1 

…. …. …. …. …. 
 
5. Data Cleaning: In data cleaning process duplicate and 
irrelevant samples were removed. special symbols in text 
data of AST and source code tokens were removed and 
sanitized. Applied text preprocessing techniques like 
lowercasing, removing punctuation, and handling special 
characters. For numerical static code metrics, imputed 
missing values using means or medians. For textual data like 
source codes and AST tokens, used padding or masking. 
 
6. BERT Representations for Source Code: BERT, a 
transformer-based language model, excels in understanding 
contextual information in source code, effectively capturing 
semantic relationships and contextual meaning, enhancing its 
value in defect prediction. Fine-tuned a pre-trained BERT 
model on defect prediction task. Input the source code 
sequences as text into BERT, and then take the [CLS] token’s 
output as a high-level representation of the code. Now the 
[CLS] token output can be used with the AST token 
embeddings and static code metrics to form a multi input 
representation. 
 
The text tokens are converted into numerical representations. 
This was done using transformer-based embeddings (BERT).  
Also converted AST tokens into numerical representations. 
This was done using word embeddings. System represented 

the tokens as sequence of words of fixed vocabulary size and 
split it. Then it converted the text to sequence using 
Tokenizer. Finally, these tokens are converted into two 
dimensional Vectors. This Vectors are further processed in 
Embedding layer to converted into dense vector. 
 
7. Feature Scaling: Normalized and standardized the static 
code metrics to ensure that they are on similar scales. This 
helps the model converge faster during training and prevents 
certain features from dominating others. 
 
8. Label Encoding: Converted the bug labels into numerical 
format if they were not already. For binary labels, this could 
be mapping ‘defective’ to 1 and ‘non-defective’ to 0. 
 
9. Data Integration: Depending on the structure of a multi-
input deep learning model, it becomes necessary to combine 
various data components. This might entail establishing 
distinct input branches for static code metrics, source code, 
and AST tokens. 
 
10. Data Splitting: Partitioned the dataset into training, 
validation, and test subsets, typically following a 70-75% 
training, 10-15% test, and 10-15% evaluation split. The data 
was shuffled to ensure impartiality during training. 
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Fig. 1 Summary of Transformer BERT Model 

 
11. Understand Class Imbalance: Class imbalance is a 
crucial consideration when dealing with software defect 
prediction or any binary classification task. Addressing 
class imbalance, where the representation of one class 
(defective code) is significantly lower than the other (non-
defective code), is a crucial aspect of data preprocessing for 
training data. 
 
Analysed the distribution of bug labels in training set. 
Calculate the ratio of defective to non-defective samples 
within the training dataset. If the defect class is notably 
smaller, a class imbalance problem is identified. 
 
To address class imbalance, increased the count of minority 
class instances by duplicating samples or generating 
synthetic data points. Techniques like SMOTE or 
ADASYN were employed for this purpose. 

12. Evaluation Metrics Selection: Chose appropriate 
evaluation metrics that consider class imbalance. Metrics 
like precision, recall, F1-score, and area under the ROC 
curve (AUC) are often more informative in imbalanced 
scenarios than simple accuracy. 
 
a. Recall = TP

(TF+FN)
                                                             

b. Specificity = TN
(TN+FN)

                                                     

c. Precision = TP
(TP+FP)

                                                      

d. 1-Specificity =   = FP
(TN+FP)

                                                             

e. Accuracy =  (TP+TN)
(TP+TN+FP+FN)

                                                            

f. F1 Score = 2 x (Precision  x Recall)
(Precision + Recall)
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Fig. 2 AUC-ROC Curve 

 
The ROC curve is a probability curve, and the AUC is a 
measure of how well a model can distinguish between defect 
and non-defect cases. 
 
13. Adjust Thresholds: By default, many models predict the 
class with the highest probability. By modifying the 
classification threshold to attain a specific trade-off between 
precision and recall, considering the data distribution. 
 
14. Hyper Parameter Tuning: Experiment with different 
hyper parameters, architectures, and techniques to find the 
best combination that handles class imbalance effectively. 
 
15. Class Weights: Most deep learning frameworks allows to 
assign different weights to classes during training. Assigning 

higher weights to the minority class makes the model more 
sensitive to its predictions. This informs the model to assign 
higher importance to the minority class during training. This 
adjustment helps the model to focus on correctly identifying 
the defective instances despite their lower representation in 
the dataset. 
 
Dealing with class imbalance isn’t a universal fix; the optimal 
method depends on the unique characteristics of the training 
dataset. Evaluating the effect of class imbalance techniques 
on the model’s performance is crucial, balancing the 
avoidance of false positives and false negatives. 
 
C. Feature Selection and Engineering 
 
Static code metrics, source codes, and language-independent 
AST tokens, a suitable model architecture for defect 
prediction that spans across different programming 
languages and software projects. could be a hybrid model that 
combines both the AST tokens and static code metrics while 
leveraging a powerful language model for understanding the 
textual context. One such architecture could be a combination 
of BERT-based sequence classification and a multi-input 
neural network [40]. Feature selection is the process of 
picking a subset of the most significant features from the 
initial feature set. The objective is to decrease data 
dimensionality while preserving or enhancing model 
performance. 
 
In proposed model, there are three types of features: AST 
tokens, static code metrics and source codes. 

 

 
Fig. 3 Correlation heat map among Static Code Metrics 
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IV. SUGGESTED FRAMEWORK FOR PREDICTING 
SOFTWARE DEFECTS 

 
In this study, a hybrid approach is chosen that leverages 
multiple sources of information for defect prediction. The 
selected machine learning algorithms include a combination 
of traditional techniques and advanced deep learning models. 
The chosen algorithms are as follows: 
 
A. Bidirectional LSTM with Attention for AST Embeddings 
 
The Bi - Directional Long short term memory (BiD-LSTM) 
and Attention is a deep learning architecture tailored for 
sequence data, such as Abstract Syntax Trees (AST) in source 
code. It captures intricate temporal dependencies and 
relationships present in code structures. AST representations 
are crucial for capturing structural information from source 
code. Bidirectional LSTM exploits both past and future 
contexts, while the Attention mechanism focuses on relevant 
parts of the code snippet. 
 
B. Dense Layer for Static Code Metrics 
 
A dense layer serves as a simple yet effective mechanism to 
process static code metrics. It aggregates numeric features to 
provide valuable insights into the software’s complexity and 
maintainability. Static code metrics offer insights into 
software complexity, which can correlate with defect-prone 
areas. A dense layer effectively combines these features for 
further analysis. 
 
C. BERT-based Language Model for Source Code 
 
Bidirectional Encoder Representations from Transformers 
(BERT) is a powerful previously trained language model 
capable of capturing contextual information from textual 
data. Source code contains textual context that may be 
indicative of defects. BERT’s ability to understand language 
context makes it suitable for extracting features from code 
snippets. 
 
D. Model Architectures and Hyperparameter Tuning 
 
The chosen algorithms are integrated into a hybrid model 
architecture, which combines the outputs of the Bidirectional 
LSTM, the dense layer for static code metrics, and the BERT-
based language model. This combined approach aims to 
capture both structural and textual aspects of source code for 
enhanced defect prediction. 
 
1. Bidirectional LSTM with Attention 

a. An embedding layer converts discrete AST tokens into 
continuous vectors. 

b. Spatial Dropout is applied to prevent overfitting by 
dropping entire channels of feature maps. 

c. Bidirectional LSTM captures sequential patterns in the 
AST embeddings. 

d. Attention mechanism highlights relevant parts of the 
code snippet. 

e. Flatten layer converts the attention output into a 
suitable format for fusion. 

 
2. Dense Layer for Static Code Metrics 

a. A dense layer processes static code metrics, extracting 
high-level features. 

 
3. BERT-based Language Model for Source Code 

a. BERT tokenizer prepares code snippets for input. 
b. BERT model generates contextual embeddings for the 

code snippets. 
 
4. Hyperparameter Tuning Strategies 

a. Batch Size: Tuning the batch size affects convergence 
and memory usage. Smaller batch sizes of 32 
improved generalizations. 

b. Learning Rate: The learning rate governs the step size 
during optimization. Grid search or random search has 
been applied to find an optimal learning rate. 

c. Dropout Rate: Dropout is a regularization technique to 
mitigate overfitting. Hyperparameter search identified 
the dropout rate that balances overfitting and under 
fitting. 

d. LSTM Units: The number of LSTM units influences 
model complexity. A grid search revealed the optimal 
number. 

e. Number of Dense Layers: The number of dense layer 
units can be tuned for controlling model capacity. 

f. Embedding Dimensions: For the embedding layer, 
different dimensions are explored to capture relevant 
features. 

 
E. Model Summary 
 
The Deep Learning layers of Hybrid Model Summary is 
given in the Table IV. 
 

TABLE IV  MODEL SUMMARY OF PROPOSED HYBRID  
MODEL FOR SDP 

Layers Shape Param 
InputLayer (AST Input) 1851 0 
Embedding 1851 x 128 256000 
SpatialDropout1D 1851x128 0 

Bidirectional LSTM 1851X392 509600 
Attention 1851X392 0 
Input Layer (Static Metrics Input) 0 0 
Flatten 725592 0 
Dense 32 672 
Input Layer (BERT Input) 512 0 

Concatenate 726136 0 
Dense 128 92945536 
Dense 1 129 
Total Parameters  93711937 
Trainable Parameters  93711937 
Non-trainable Parameters  0 
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The model consists of multiple input layers, each 
representing a different type of data: AST embeddings 
(ast_input`), static code metrics (static_metrics_input), and 
BERT embeddings (bert_input).  
 
The model contains several layers that process and transform 
the input data. The Embedding layer converts AST tokens 
into continuous vectors with an output shape of (None, 1851, 
128), indicating a sequence length of 1851 tokens and an 
embedding dimension of 128. The SpatialDropout1D layer 
applies spatial dropout to the embedded sequences, resulting 
in the same output shape as the embedding layer. The 
Bidirectional layer implements a bidirectional LSTM to 
capture sequential patterns in AST embeddings, resulting in 
an output shape of (None, 1851, 392). The Attention layer 
calculates attention scores over the bidirectional LSTM 
output, maintaining the same output shape. The Flatten layer 
flattens the attention output, transforming it into a vector of 
shape (None, 725592). The model also includes a Dense layer 
that processes the static code metrics, resulting in an output 
shape of (None, 32). All these outputs are concatenated using 
the `Concatenate` layer into a single feature vector of shape 
(None, 726136). The concatenated features are then passed 
through another Dense layer with 128 units, resulting in an 
output shape of (None, 128). Finally, the last Dense layer 
with a one unit and classifier sigmoid function produces the 
model’s output with shape (None, 1), which corresponds to 
the binary classification of defect presence or absence. 
 
The Total parameters count (93,711,937) represents the total 
number of adjustable parameters in the model. These 
parameters are acquired through training to enhance the 
model’s performance for the specified task. The count of 
trainable parameters (93,711,937) signifies the quantity of 
parameters that will undergo updates during training via 
backpropagation. 
 
The count of non-trainable parameters is zero that, implies 
that there are no fixed or pre-initialized parameters in this 
model. Non-trainable parameters are often associated with 
elements like embedding layers using pre-trained 
embeddings. 
 
Overall, the model architecture is a complex composition of 
various layers that process different types of data (AST 
embeddings, static code metrics, and BERT embeddings) to 
make a binary classification prediction for software defect 
presence. The large number of trainable parameters suggests 
that the model has the capacity to capture intricate patterns 
and relationships present in the input data. The architecture is 
designed to leverage the strengths of each input source, 
ultimately contributing to more accurate software defect 
predictions. 
 
In conclusion, the hybrid approach combines the strengths of 
different machine learning algorithms to predict software 
defects. Bidirectional LSTM with Attention captures 
structural dependencies, a dense layer processes static 
metrics, and a BERT-based language model interprets textual 

context. The model architectures and hyperparameter tuning 
strategies are designed to maximize the predictive 
performance of the hybrid model. This approach showcases 
the potential of combining various data sources and 
algorithms to enhance software defect prediction and 
contribute to improved software quality and reliability. 
 

V. EXPERIMENTAL SETUP 
 
This section presents the outcomes of experiments conducted 
to assess the performance of the hybrid model architecture 
proposed for defect prediction. The hybrid model combines 
the outputs of three components: The Bi- Directional LSTM, 
the dense layer for static code metrics, and the BERT-based 
language model. The aim of this hybrid approach is to exploit 
both structural and textual features of source code to enhance 
defect prediction accuracy. 
 
A. Experimental Setup 
 
Datasets: The dataset comprised of open-source software 
projects from diverse domains. The dataset was preprocessed 
to extract code snippets, static code metrics, and textual 
descriptions. Each instance in the dataset was labelled code 
snippet’s defect status, whether defective or non-defective, is 
determined based on past defect records. 
 
One set of summary of cross project processed data set from 
GitHub Promise Backups [41] is given below. 
 
The provided dataset summary tabulates the statistics for 
different projects and their corresponding datasets in terms of 
static code metrics, processed source code files, processed 
AST data sets, and hybrid datasets for defect prediction. Let’s 
break down the information presented in the table. 
1. Sl. No. (Serial Number): Sequential number assigned to 

each project. 
2. Project: Name of the software project under 

consideration. 
3. Static Code Metrics Dataset 

a. Bug: counts of instances (code snippets) labeled as 
defective (containing bugs). 

b. Clean: counts of instances labeled as non-defective 
(bug-free). 

c. Total: Sum of bug and clean instances, representing 
the complete count of instances within the dataset of 
static code metrics. 

4. Processed Source Code Files 
a. Bug: counts of processed source code files that contain 

bugs. 
b. Clean: counts of processed source code files that are 

bug-free. 
c. Total: counts of processed source code files. 

5. Processed AST Data Sets 
a. Bug: Number of processed abstract syntax tree (AST) 

data sets that contain bugs. 
b. Clean: Number of processed AST data sets that are 

bug-free. 
c. Total: Total number of processed AST data sets. 
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6. Hybrid Datasets 
a. Bug: counts of instances labeled as defective in the 

hybrid dataset. 
b. Clean: counts of instances labeled as non-defective in 

the hybrid dataset. 
c. Total: counts of instances in the hybrid dataset. 

 
For example, let’s take the first row as an example: 
 
Project: apache-ant-1.6.0, Static Code Metrics Dataset 
contains 92 instances of Bug, 259 instances of Clean and, that 
is Total of (92 + 259) = 351 instances 
 
In Processed Source Code Files contains 91 files is having 
bug, 241 files are clean in total of sample is (91 + 241) = 332 
Files. 
 

In Processed AST Data Sets contains 91 data sets is having 
bug, 241 data sets are clean in total of sample is (91 + 241) = 
332 data sets 
 
In Hybrid Datasets which contains the common data from 
Static Code Metrics Dataset, Processed Source Code Files 
and Processed AST Data Sets, has 91 instances of bug (i.e., 
minimum of all bug count), 241 instances of clean ((i.e 
minimum of all clean count) in Total sample of (91 + 241) 
332 instances. 
 
This table offers an insight into the dataset’s structure, 
encompassing the count of instances, files, and data subsets 
for each project and dataset type. This information is crucial 
for comprehending the data’s magnitude and distribution in 
software defect prediction research. 

TABLE V SCALE OF DATA DISTRIBUTIONS 

Sl. No. Project 
Static Code Metrics 

Dataset 
Processed Source 

Code Files 
Processed AST Data 

Sets Hybrid Datasets 

Bug Clean Total Bug Clean Total Bug Clean Total Bug Clean Total 

1 apache-ant-1..6.0 92 259 351 91 241 332 91 241 332 91 241 332 
2 apache-ant-1..7.0 166 579 745 166 573 739 166 573 739 166 573 739 
3 jakarta-ant-1.3.0 20 105 125 20 104 124 20 104 124 20 104 124 
4 jakarta-ant-1..4.0 40 138 178 40 136 176 40 136 176 40 136 176 
5 jakarta-ant-1-5-0 32 261 293 32 259 291 32 259 291 32 259 291 
6 camel-1- 0.0 13 326 339 26 508 534 13 326 339 13 326 339 

7 camel-1- 2.0 216 392 608 432 531 963 216 379 595 216 379 595 
8 camel-1- 4.0 145 727 872 290 1031 1321 145 703 848 145 703 848 
9 camel-1- 6.0 188 777 965 376 1082 1458 188 747 935 188 747 935 
10 jedit32source 90 182 272 90 170 260 90 170 260 90 170 260 
11 jedit4.3source 11 481 492 11 476 487 11 476 487 11 476 487 
12 jedit40source 75 231 306 75 218 293 75 218 293 75 218 293 

13 jedit41source 79 233 312 79 221 300 79 221 300 79 221 300 
14 jedit42source 48 319 367 48 307 355 48 307 355 48 307 355 
15 log4j-1_2final 189 16 205 186 8 194 186 8 194 186 8 194 
16 log4j-v_1_0 34 101 135 34 85 119 34 85 119 34 85 119 
17 log4j-v_1_1 37 72 109 37 67 104 37 67 104 37 67 104 

18 lucene-releases-
lucene-2.0.0 91 104 195 91 95 186 91 95 186 91 95 186 

19 lucene-releases-
lucene-2.2.0 144 103 247 143 91 234 143 91 234 143 91 234 

20 
lucene-solr-
releases-lucene-
2.4.0 

203 137 340 202 127 329 202 127 329 202 127 329 

21 poi-REL_1_5_0 141 96 237 141 93 234 141 93 234 141 93 234 

22 poi-
REL_2_0_RC1 37 277 314 37 265 302 37 265 302 37 265 302 

23 poi-REL_2_5_1 248 137 385 248 130 378 248 130 378 248 130 378 

24 poi-REL_3_0 281 161 442 280 156 436 280 156 436 280 156 436 
25 synapse-1.0 16 141 157 16 141 157 16 141 157 16 141 157 
26 synapse-1.1 60 162 222 60 162 222 60 162 222 60 162 222 
27 synapse-1.2 86 170 256 86 170 256 86 170 256 86 170 256 
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Sl. No. Project 
Static Code Metrics 

Dataset 
Processed Source 

Code Files 
Processed AST Data 

Sets Hybrid Datasets 

Bug Clean Total Bug Clean Total Bug Clean Total Bug Clean Total 
28 velocity-1.4 147 49 196 147 48 195 147 48 195 147 48 195 
29 velocity-1.5 142 72 214 142 72 214 142 72 214 142 72 214 
30 velocity-1.6 78 151 229 78 151 229 78 151 229 78 151 229 
31 xalan-j_2_4_0 110 613 723 183 916 1099 109 561 670 109 561 670 

32 xalan-j_2_5_0 387 416 803 569 608 1177 383 369 752 383 369 752 
33 xalan-j_2_6_0 411 474 885 614 751 1365 404 461 865 404 461 865 
34 xalan-j_2_7_0 898 11 909 1397 1 1398 895 1 896 895 1 896 

35 xerces2-j-Xerces-
J_1_1_0 77 85 162 104 110 214 69 55 124 69 55 124 

36 xerces2-j-Xerces-
J_1_2_0 71 369 440 105 499 604 71 368 439 71 368 439 

37 xerces2-j-Xerces-
J_1_3_0 69 384 453 131 497 628 69 383 452 69 383 452 

38 xerces2-j-Xerces-
J_1_4_4 437 151 588 267 118 385 213 118 331 213 118 331 

Total 5609 9462 15071 7074 11218 18292 5355 9037 14392 5355 9037 14392 
 

 
Fig. 5 Venn Diagram of common Package from All dataset 

 
The hybrid model architecture was implemented using 
Tensor Flow for the Bidirectional LSTM and the static code 
metrics component, while PyTorch and the Transformers 
library were used to integrate the BERT-based language 
model. 
 

VI. THE RESULT OF EXPERIMENT 
 
The Table VI summarizes the performance metrics achieved 
by the proposed hybrid model architecture in test set. 
 

TABLE VI EXPERIMENT RESULT OF EVALUATION METRICS 
 

Sl. No. Evaluation Metrics Values 
1 Accuracy 85% 
2 Recall 88% 
3 F1-score 85% 
4 Precision 82% 
5 AUC-ROC 90% 

 
 

Fig. 6 Experiment Results of AUC-ROC Evaluation 
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The ROC curve in Figure 6 showcases the balance between 
the true positive rate (recall) and the false positive rate. The 
AUC-ROC score of 0.90 signifies the hybrid model’s robust 
capacity to differentiate between defective and non-defective 
code snippets. 
 
 

A. Comparison with Baseline Models 
 
We evaluated the hybrid model’s performance in comparison 
to three baseline models: a standalone Bi- Directional lstm 
model, a Random Forest model, and a Bert-based 
Transformers Model. The summarized results are presented 
below. 

 
TABLE VII COMPARISON WITH BASELINE MODELS 

 
Sl. No. Model Accuracy Precision Recall F1-score AUC-ROC 

1. Standalone Bidirectional LSTM 0.77 0.55 0.64 0.59 0.73 
2. Random Forest 0.65 0.46 1.0 0.63 0.70 
3. Standalone Transformer Model 0.68 0.44 0.82 0.57 0.72 

 

 
Fig. 7 AUC-ROC Evaluation of Standalone Bidirectional LSTM 

 
 

 
Fig. 8 AUC-ROC Evaluation of Random Forest 

 

 
Fig. 9 AUC-ROC Evaluation of Standalone Transformer Model (Bert) 

 

 
Fig. 10 AUC-ROC Evaluation of Hybrid 

 
In this section, we present a detailed comparison between the 
performance of the proposed hybrid model and three baseline 
models: Standalone Bidirectional LSTM, Random Forest, 
and Standalone Transformer Model. We evaluate their 
performance using a range of metrics, including accuracy, 
precision, recall, F1-score, and AUC-ROC. 
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B. Standalone Bidirectional LSTM (Baseline 1) 
 
The Standalone Bidirectional LSTM model attained an 
accuracy of 0.77, with a precision of 0.55, recall of 0.64, F1-
score of 0.59, and an AUC-ROC of 0.73. Although it 
exhibited a reasonable recall, its precision and F1-score were 
comparatively lower, suggesting it could correctly identify 
defective instances but had challenges in minimizing false 
positives. 
 
C. Random Forest (Baseline 2) 
 
The Random Forest baseline achieved an accuracy of 0.65, 
with a precision of 0.46, recall of 1.0, F1-score of 0.63, and 
an AUC-ROC of 0.70. It’s worth noting that the recall value 
of 1.0 implies flawless identification of defective instances, 
but this came at the cost of a relatively lower precision, 
indicating a higher incidence of false positives. 
 
D. Standalone Transformer Model (Baseline 3) 
 
The Standalone Transformer Model achieved an accuracy of 
0.68, with a precision of 0.44, recall of 0.82, F1-score of 0.57, 
and an AUC-ROC of 0.72. While it exhibited strong recall, 
precision posed a challenge, leading to a comparatively lower 
F1-score. 

E. Proposed Hybrid Multi Input Model 
 
The Proposed Hybrid Multi-Input Model, combining 
Bidirectional lstm, BERT, Static Code Metrics, AST Tokens, 
and Source Code Features, outperformed the baseline models 
across various metrics. It accomplished an accuracy of 0.85, 
precision of 0.82, recall of 0.88, F1-score of 0.85, and an 
AUC-ROC of 0.90. 
 

VII. DISCUSSION OF THE STUDY 
 
The hybrid multi-input model we introduced surpassed the 
baseline models across a range of metrics. Its strong F1-
score, indicative of balanced precision and recall, 
underscores its proficiency in accurately categorizing 
defective instances while minimizing false positives. The 
incorporation of Bidirectional LSTM, BERT, Static Code 
Metrics, AST Tokens, and Source Code Features enabled the 
model to harness both structural and textual aspects of source 
code, thereby enhancing its accuracy in defect prediction. 
 
The significantly higher AUC-ROC and F1 score of the 
proposed model suggests that it excelled in distinguishing 
between defective and non-defective instances, showcasing 
its robustness and potential for practical application. 

 

  
(a) 
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(b) 

Fig. 11 Cross-Project Defect Prediction 
 
The proposed model for predicting defects exhibits language 
and project independence. Its hybrid architecture, combining 
linguistic features, static code metrics, and textual context 
interpretation, enabled it to effectively predict defects across 
diverse projects. The model’s ability to generalize and adapt 
makes it suitable for application across various software 
projects and domains. Show in above Figure 11, how hybrid 
model trained on one project dataset can predict defect 
different project data set, like model trained on log4j can 
predict the defect of lucene-solr.. and poi-..  with f1 score of 
.70 and .75. 
 
Overall, the proposed hybrid model demonstrated the most 
favourable combination of precision, accuracy, recall, AUC-
ROC and F1 Score making it a promising approach for defect 
prediction and highlighting its potential to improve software 
quality by accurately identifying and addressing defects 
during the software development lifecycle. 
 
The results indicate that the proposed hybrid model 
architecture, which integrates TensorFlow and Keras for 
Bidirectional LSTM and static code metrics, along with 
PyTorch and Transformers for the BERT-based language 
model, significantly improves defect prediction accuracy 
compared to standalone approaches. The model’s ability to 
capture both structural and textual aspects of source code 
contributes to its enhanced performance. 
 

VIII. CONCLUSION 
 
In conclusion, this research successfully introduced a novel 
hybrid machine learning model that combines Bidirectional 
LSTM, BERT-based language models, and static code 
metrics to predict defects in software. This approach 
comprehensively addressed both structural and textual 

aspects of source code, leading to improved defect prediction 
accuracy compared to traditional methods. The study 
underscores the capabilities of machine learning methods in 
transforming defect prediction into a proactive and integral 
component of software development, thereby enhancing 
software quality assurance, user satisfaction, and developer 
productivity. The insights gained from this research have the 
potential to drive further advancements in the field, making 
defect prediction a more robust and efficient process in the 
ever-evolving landscape of software development. 

 
IX. FUTURE WORK 

 
While this research has achieved promising results, there are 
several avenues for future exploration and refinement. One 
potential direction is the investigation of techniques to 
dynamically adapt the hybrid model to evolving software 
projects and their specific defect patterns, enhancing its 
generalizability across different domains and project 
contexts. Moreover, delving into ensemble methods that 
amalgamate forecasts from several models may bolster the 
resilience and precision of defect prediction. Ongoing 
advancements in defect prediction, coupled with the 
continuously evolving domain of machine learning, have the 
potential to transform software quality assurance and play a 
role in producing top-tier software products within the ever-
changing software development environment. 
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