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Abstract - This systematic review and meta-analysis examined 
environmental and genetic interaction models for predicting 
lung cancer risk using machine learning techniques. The 
findings underscore the importance of considering both genetic 
and environmental factors to enhance predictive accuracy, with 
significant clinical implications. Among the models reviewed, 
the Rotation Forest model demonstrated superior performance, 
achieving an AUC of 0.993, reflecting excellent predictive 
capabilities. The mean AUC across all models was 
approximately 0.789, indicating moderate to good 
discrimination. These results hold promising implications for 
personalized medicine and clinical decision-making, potentially 
improving patient outcomes and reducing the global burden of 
lung cancer. The meta-analysis further highlighted strong 
performance, with an average TRI-performance (accuracy, 
precision, recall) of 88.1%, demonstrating robust predictive 
abilities. Integrating machine learning with multidimensional 
data deepens the understanding of the biological mechanisms 
underlying lung cancer and supports its application in precision 
oncology, paving the way for individualized interventions and 
improved clinical management. 
Keywords: Lung Cancer Risk, Machine Learning, Genetic and 
Environmental Factors, Rotation Forest Model, Precision 
Oncology 

I. INTRODUCTION

The dynamics between nature and nurture are reflected in the 
biology of gene-environment (G×E) interaction [1]. These 
dynamics aid in addressing persistent issues in psychology 
regarding the roles of environment and heredity [2], [3]. 
Phenotypic diversity, produced by genetic mechanisms such 
as recombination and mutation, or by varying the expression 
of the same genome in response to environmental stimuli, 
allows organisms to adapt to a variety of environments [4], 
[5]. “Etiologic heterogeneity arises from variations in 
environmental and genetic factors across individuals, leading 
to diverse disease presentations within seemingly similar 
clinical groups” [5], [6]. To visually analyze nuclear 
alterations, light microscopy is used, which is an important 
tool in cancer detection. Nuclear structure is quantified using 
numerical parameters through computer-aided diagnostic 
tools, aiding in prognosis [7], [8]. Predicting cancer involves 
evaluating survivorship, recurrence, and susceptibility [9], 
[10]. Recurrence indicates the likelihood of cancer returning 
after therapy, survival assesses outcomes following 
diagnosis, and susceptibility predicts cancer risk [11], [12]. 

Lung cancer ranks as the leading cause of global cancer 
incidence and mortality, with 1.8 million documented deaths 
and approximately 2 million diagnoses each year [13], [14]. 
The biology of lung cancer is well-defined, offering valuable 
insights for comprehending its complexities [15]. This has 
enabled the development of individualized treatment plans 
based on biomarker profiling and histologic classification 
[16]. Despite declining smoking rates, a rising trend in 
smoking among women in developed nations has led to an 
increasing incidence of lung cancer in females [17], [18]. 

Correlations between radiologic, clinical, and pathologic 
findings highlight the growing occurrence of 
adenocarcinoma histology and advance our understanding of 
genetic profiling and personalized treatments [8], [12]. A 
medical diagnosis is essential for prognosis, which goes 
beyond diagnosis by emphasizing the importance of 
evaluating numerous variables [11], [19]. Lung cancer risk is 
influenced by various factors, the most common being 
lifestyle, environmental exposures, and occupational 
hazards. These factors have different impacts based on 
geography, gender, ethnicity, genetic predisposition, and 
their combined effects [17], [20]. The outcome of genetic-
reactive chemistry varies among environmental hosts [1]. 
Identifying genes that affect a person's susceptibility to 
complex traits requires effectively managing environmental 
conditions. This is particularly true for lung cancer, where 
smoking and environmental factors play a significant role in 
its etiology [14], [18], [21]. 

As the application of machine learning (ML) grows in 
healthcare, effective regulations are needed to monitor and 
control the development of ML-based applications and other 
artificial intelligence (AI) software for early disease 
diagnosis and prediction across a range of medical conditions 
[18], [22]. The integration and analysis of large datasets 
related to lung cancer using ML models provide valuable 
tools in lung cancer research, offering opportunities for 
improved understanding and clinical application [23]. The 
potential of ML techniques has enhanced the accuracy of 
predictions related to survival, recurrence, and susceptibility 
to cancer, emphasizing the use of feature selection and 
classification methods, as well as the integration of 
multidimensional heterogeneous data for cancer inference 
[24], [25]. 
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Data preprocessing is an essential first step in improving data 
quality, followed by feature extraction, model 
implementation, training, and parameter adjustment to ensure 
reliable options and accurate predictions [22], [26], [27]. 
Medical image analysis has significantly advanced through 
ML techniques, particularly in automated feature extraction 
[28], [29]. Effective medical diagnoses and classifications 
result from proper feature selection and model training, 
ensuring accurate predictions [30], [31]. This research study 
will examine the relationship between genetic variants and 
environmental factors in predicting lung cancer risk. The 
review will focus on studies employing ML techniques to 
develop lung cancer risk prediction models, examining the 
features, datasets, and methods used, as well as how the 
results may enhance lung cancer risk assessment and suggest 
potential clinical applications and future research directions. 

A. Rationale

This systematic review was conducted to enhance our 
understanding of the predictive factors surrounding lung 
cancer risk, as well as models used to identify consistency 
and variability, and to evaluate their performance in terms of 
adaptability and clinical implications [32]. It aims to 
thoroughly examine the reliability of measurement 
instruments utilized in research, emphasizing their roles and 
features in ensuring accurate data collection [33], [34]. The 
review applies environmental and genetic interacting factors 
to develop models for predicting lung cancer risk using 
machine learning. 

B. Objectives

This research aims to review existing articles on 
environmental and genetic factors influencing lung cancer 
risk prediction using machine learning techniques. It focuses 
on environmental and genetic factors, evaluates predictive 
model performance, and explores interactions between these 
factors to provide feasible directions for future practice. The 
study follows the PICOS framework [35], which includes: 

1. Population: Analyze the efficiency of machine learning
models in predicting lung cancer risk based on
environmental and genetic factors.

2. Intervention: Identify limitations in research and
propose recommendations for clinical applications and
future studies in lung cancer risk prediction using
machine learning.

3. Comparison: Investigate the interaction between
environmental and genetic factors in the development of
predictive models for lung cancer risk.

4. Outcome: Identify and summarize the environmental
and genetic factors associated with the use of machine
learning algorithms in lung cancer risk prediction
models, and recommend additional applications for
personalized and clinical use.

5. Study Design: Articles will be thoroughly screened, both
manually and automatically, to ensure that only relevant
documents are included in the review. The study applies
the PRISMA 2020 guidelines [36]. Data sources for the

analysis will include final articles extracted from 
Scopus, PubMed, and Google Scholar platforms. 

II. METHODOLOGY

The method employed in this research study adheres to the 
PRISMA 2020 Statement [36]. Articles were retrieved from 
Scopus and PubMed on February 22, 2024, and from Google 
Scholar, along with random searches from various search 
engines, on February 16, 2024. Effective filtering techniques 
were applied to exclude articles unrelated to the research 
topics, including those not written in English. The search 
strategy incorporated terms related to “Environment*”, 
“Genetic”, “genetic*”, “gen* interact*”, “gene* variation”, 
“model* approach”, “Lung* cancer”, “Lung* carcinoma”, 
“Pulmonary cancer”, “Pulmonary carcinoma”, “respiratory 
carcinoma”, “bronchial carcinoma”, “lung tumor”, 
“respiratory malignancy”, “thoracic malignancy”, 
“pulmonary neoplasm”, “respiratory tumor”, “risk”, 
“predict*”, “estimation”, “analy*”, “forecast*”, “risk 
assessment”, “predictive modeling”, “data mining”, 
“machine learning”, and “Artificial Intelligence”. 

A. Eligibility Criteria

The eligibility criteria for this research study followed the 
PICOS framework guidelines [35], which are: 

1. Population: Studies involving human populations,
particularly those at risk of lung cancer or diagnosed
with lung cancer.

2. Intervention: Studies investigating environmental and
genetic factors that may influence lung cancer risk, and
studies utilizing machine learning techniques to develop
predictive models or algorithms for lung cancer risk
prediction.

3. Comparison: Studies comparing the predictive
performance of models incorporating both
environmental and genetic factors versus models
considering either factor alone. Studies evaluating
different machine learning algorithms for lung cancer
risk prediction.

4. Outcome: Studies that aim to predict the risk of lung
cancer using machine learning techniques, and studies
reporting performance metrics.

5. Study Design: Articles extracted from Scopus, PubMed,
and Google Scholar platforms will be screened and
included or excluded from the review based on the
stipulated criteria to ensure the selection of high-quality
and relevant articles. The analysis will focus on model
performance and proposed clinical applications.

B. Inclusive Criteria

The inclusion criteria were applied based on the following:
1. Articles focusing on human environments, specifically

populations at risk of lung cancer or diagnosed with lung
cancer.

2. Investigations of environmental and genetic factors that
may influence lung cancer risk.

3. Lung cancer risk prediction using machine learning
techniques.
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4. Observational and interventional studies that utilize
machine learning methods for lung cancer risk
prediction.

5. Research focusing on human lungs.
6. Studies published in English only.
7. Articles published between 2013 and 2024.
8. Articles available in full-text format.

C. Exclusive Criteria
The exclusion criteria were based on the following.

1. Studies focusing solely on non-machine learning
methods for risk prediction.

2. Studies not related to lung cancer risk prediction.
3. Studies with inadequate reporting of methods and

results.
4. Duplicated studies.
5. Studies not written in English.
6. Incomplete articles, newspapers, and conference papers.
7. Articles published before 2013.

These criteria ensure that relevant studies focusing on 
environmental and genetic interaction models for lung 
cancer risk prediction using machine learning are included, 
while excluding studies that do not meet the specific 
objectives of the review.   
D. Information Sources

1. Scopus Querry - Thursday February 22, 2024
https://www.scopus.com/

2. PubMed - Thursday February 22, 2024
https://pubmed.ncbi.nlm.nih.gov/

3. Google Scholar - Friday February 16, 2024
https://scholar.google.com/

E. Search Strategy

The search strategy was designed to cover every aspect of the 
investigation related to the topic of the research: 
Environmental and Genetic Interaction Models for Lung 
Cancer Risk Prediction using Machine Learning. It 
encompasses fields such as Medicine, Biological and 
Chemical Sciences, Genetics, Computer and Information 
Technology, Environmental Science, and Decision Sciences. 
The strategy also includes research focusing on human 
environments, environmental and genetic factors that may 
influence lung cancer risk prediction using machine learning 
techniques, and articles published in English from 2013 to 
2024. 

F. Selection Process

Scopus: A total of 491 documents were successfully retrieved 
from the Scopus web platform using the following query 
string: 
TITLE-ABS-KEY ( ( ( environment* OR genetic* OR 
“gene* interact*” OR “gene* variation” ) AND ( model* OR 
approach ) AND ( “Lung* cancer” OR “Lung* carcinoma” 
OR “Pulmonary cancer” OR “Pulmonary carcinoma” OR 
“respiratory carcinoma” OR “bronchial carcinoma” OR 
“lung tumor” OR “respiratory malignancy” OR “thoracic 
malignancy” OR “pulmonary neoplasm” OR “respiratory 

tumor” ) AND ( risk OR predict* OR estimation OR analy* 
OR forecast* OR “risk assessment” OR “predictive 
modeling” OR “data mining” ) AND ( “machine learning” 
OR “Artificial Intelligence” ) ) ) AND PUBYEAR > 2009 
AND PUBYEAR < 2025 AND PUBYEAR > 2013 AND 
PUBYEAR < 2025 AND ( LIMIT-TO ( SRCTYPE , “j” ) ) 
AND ( LIMIT-TO ( DOCTYPE , “ar” ) ) AND ( LIMIT-TO 
( SUBJAREA , “BIOC” ) OR LIMIT-TO ( SUBJAREA , 
“COMP” ) OR LIMIT-TO ( SUBJAREA , “MEDI” ) OR 
LIMIT-TO ( SUBJAREA , “IMMU” ) OR LIMIT-TO ( 
SUBJAREA , “ENVI” ) OR LIMIT-TO ( SUBJAREA , 
“NEUR” ) OR LIMIT-TO ( SUBJAREA , “DECI” ) ) AND 
( LIMIT-TO ( LANGUAGE , “English” ) ) AND ( LIMIT-
TO ( PUBSTAGE , “final” ) ) 

PubMed: A total of 275 documents were successfully 
extracted from the PubMed web platform using the following 
query string: 
((“environment*”[All Fields] OR “genetic*”[All Fields] OR 
“gene interaction”[All Fields] OR “gene variation”[All 
Fields]) AND (“model*”[All Fields] OR “approach”[All 
Fields] OR “approach s”[All Fields] OR 
“approachability”[All Fields] OR “approachable”[All Fields] 
OR “approache”[All Fields] OR “approached”[All Fields] 
OR “approaches”[All Fields] OR “approaching”[All Fields] 
OR “approachs”[All Fields]) AND (“lung cancer”[All 
Fields] OR “lung carcinoma”[All Fields] OR “pulmonary 
cancer”[All Fields] OR “pulmonary carcinoma”[All Fields] 
OR “respiratory carcinoma”[All Fields] OR “bronchial 
carcinoma”[All Fields] OR “lung tumor”[All Fields] OR 
“respiratory malignancy”[All Fields] OR “thoracic 
malignancy”[All Fields] OR “pulmonary neoplasm”[All 
Fields] OR “respiratory tumor”[All Fields]) AND 
(“risk”[MeSH Terms] OR “risk”[All Fields] OR 
“predict*”[All Fields] OR “estimability”[All Fields] OR 
“estimable”[All Fields] OR “estimate”[All Fields] OR 
“estimated”[All Fields] OR “estimates”[All Fields] OR 
“estimating”[All Fields] OR “estimation”[All Fields] OR 
“estimations”[All Fields] OR “estimator”[All Fields] OR 
“estimator s”[All Fields] OR “estimators”[All Fields] OR 
“analy*”[All Fields] OR “forecast*”[All Fields] OR “risk 
assessment”[All Fields] OR “predictive modeling”[All 
Fields] OR “data mining”[All Fields]) AND (“machine 
learning”[All Fields] OR “Artificial Intelligence”[All 
Fields])) AND (y_10[Filter] AND fha[Filter] AND 
humans[Filter] AND english[Filter]) 

Google Scholar: The research title “Environmental and 
Genetic Interaction Models for Lung Cancer Risk Prediction 
Using Machine Learning” was used as a query string on the 
Google Scholar platform, and a total of 64 documents were 
retrieved. 

G. Data Collection Process

Documents retrieved from Scopus were exported in 
“Comma-Separated Values” (CSV) and “Research 
Information Systems” (RIS) file formats, while documents 
from PubMed were saved in CSV and PubMed file formats. 
Both sets were successfully loaded into Mendeley Reference 
Manager. Documents sourced from Google Scholar were 
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directly saved to Mendeley Reference Manager using the 
Mendeley extension in the web browser. The final search was 
conducted on Thursday, February 22, 2024, and all 
references were exported to Hubmeta (https://hubmeta.com/) 
for duplication checking, title screening, and full-text 
screening. A total of 830 documents were submitted to 
Hubmeta for review. Following the application of both 
inclusion and exclusion criteria for selecting essential 
articles, 81 articles were retrieved from Hubmeta for manual 
screening and review. 

H. Data Items

Article bibliographies were retrieved from Scopus and 
PubMed on February 22, 2024, using the query strings 
described in section 2.6 above, and from Google Scholar on 
February 16, 2024, using the research title as a query string. 
A total of 830 documents were retrieved from these three 
bibliographic databases as follows: Scopus (491), PubMed 
(275), and Google Scholar (64). The screening process was 
conducted to exclude files as follows: 215 duplicates were 
identified, and 54 documents were deemed ineligible by the 
Hubmeta screening tool. The second stage of screening 
involved title and abstract review, which revealed that 453 
documents did not align with the objectives of the research. 
Additionally, the full text of 27 documents was unavailable, 
2 documents were retracted, and the contents of 67 

documents did not explicitly cover the basis of this research 
study.  

I. Study Risk of Bias Assessment

The methods for evaluating bias in each article involved 
assessing both the outcome and study levels. At the outcome 
level, the risk of bias was evaluated by examining the quality 
of reporting and methodology for each outcome of interest, 
such as lung cancer risk prediction using machine learning 
techniques. This assessment included evaluating factors such 
as the clarity and completeness of outcome reporting, the 
appropriateness of statistical analyses, and the potential for 
outcome misclassification or measurement bias. At the study 
level, the risk of bias was evaluated by considering various 
factors that could impact the validity of the study results. This 
assessment included examining the study design, participant 
selection methods, potential confounding variables, and 
sources of bias such as funding sources or conflicts of 
interest. The information gathered from assessing the risk of 
bias for each article was used in data integration to analyze 
and interpret the findings. Articles with a high risk of bias 
were given less weight in the overall analysis, while studies 
with a lower risk of bias were prioritized.   

J. Data Flowchat

Fig. 1 2020 PRISMA Flowchart [36] 

III. RESULTS

This research presents a summary of 12 studies that focus on 
various factors influencing prognosis, environmental and 
genetic factors, and predictive elements. The included studies 
analyzed how these factors contribute to specific outcomes, 
such as disease progression and prediction. By categorizing 
the studies based on these factors, the research aims to 

provide an in-depth analysis of the landscape in this area of 
study. The document highlights the importance of 
considering various factors, both internal and external, in 
understanding and predicting outcomes in different contexts. 
Table I below identifies key themes across the studies, 
contributing to a broader understanding of prognostic and 
predictive factors in lung cancer using machine learning. 
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TABLE I FINDINGS OF INCLUDED STUDIES 

Pg = Prognostic features; Er = Environmental Factor Considered; Gn = Genetic Factor Considered; Pr = Predictive Elements 
Sl. 
No. Ref Author(s) 

(Year) Title Machine Learning 
Methodology Pg Er Gn Pr Measures Validation Findings Results 

1 [1] Manuck et 
al., (2014) 

Gene-Environment 
(GxE) Interaction 

Conceptual models 
related to gene-
environment (G × 
E) interactions, 
such as the 
diathesis-stress
model, vantage 
sensitivity, and
differential
susceptibility. 

Yes Yes Yes Yes G×E 
interaction 
studies in 
psychology 

Examination of 
conceptual 
models and 
rationales for G × 
E interactions in 
psychological 
research. 

Controversy exists regarding 
the interpretation and 
significance of G × E 
interactions in psychology. 
Some researchers embrace the 
prospect of G × E interactions 
affecting behavior, while others 
criticize the weaknesses and 
inflated claims associated with 
G × E research. 

The increase in G × E 
literature corresponds with 
decreasing expectations of 
swift advancements in 
pinpointing genes directly 
linked to psychological 
traits and disorders. G × E 
interaction is proposed as 
one of several hypotheses 
to elucidate the limited 
success in identifying 
genetic variants for 
behavioral phenotypes. 

2 [7] Kukreja S. 
et al., 
(2023) 

A Heuristic Machine 
Learning-Based 
Optimization 
Technique for 
Predicting Lung 
Cancer Patient 
Survival 

Naive Bayes, SSA, 
Rapid Decision 
Tree Learner, and 
K-Nearest Neighbor 
algorithms were 
implemented and
evaluated using the 
lung cancer dataset. 

Yes No Yes Yes The mean 
absolute error 
(MAE) of the 
predictions, 
accuracy, 
recall, and 
precision. 

The validation 
process includes 
assessing the 
accuracy, recall, 
and precision of 
the proposed 
technique's 
predictions. 

The study utilized a dataset that 
included over 100 cases sourced 
from the Wisconsin Prognostic 
Lung Cancer subdirectory. By 
leveraging this dataset, the 
researchers discovered a 
significant volume of real-
world data related to lung 
cancer cases, focusing on 
prognostic information. The 
dataset contained detailed 
information about the 
characteristics of cancer cell 
nuclei, such as radial distance, 
opacity, and location. 

When predicting how long 
a lung cancer patient 
would survive within five 
years, the mean absolute 
error (MAE) of the 
predictions made by this 
technique is accurate 
within a month. It 
achieved an accuracy, 
recall, and precision of 
98.78%, 98.4%, and 
98.6%, respectively. 

3 [18] Dritsas et 
al., (2022) 

Lung Cancer Risk 
Prediction Using 
Machine Learning 
Models 

Machine Learning 
Models 

Yes Yes No Yes Accuracy, 
Precision, 
Recall, F-
Measure, AUC 

10-fold cross-
validation 

The Rotation Forest model 
achieved high performance with 
an AUC of 99.3%, and 
accuracy, precision, recall, and 
F-measure values of 97.1%. 

The proposed model 
outperformed other 
models and demonstrated 
superior results compared 
to the reference models. 

4 [37] Wang N.  
et al., 
(2023) 

Development and 
Validation of 
Polyamine 
Metabolism-
Associated Gene 
Signatures to Predict 
Prognosis and 
Immunotherapy 
Response in Lung 
Adenocarcinoma 

Utilizing the Least 
Absolute Shrinkage 
and Selection 
Operator (LASSO) 
method to build a 
risk score model 
based on gene 
signatures 
associated with 
polyamine 
metabolism. 

Yes Yes Yes Yes AUC, 
p-value 

Validated the 
prognostic 
prediction model 
in an independent 
cohort. 
(GSE72094)  

LUAD patients were divided 
into high- and low-risk groups 
according to the risk score 
methodology. It was found that 
there are two unique subgroups 
of LUAD patients (C1 and C2). 
A total of 291 differentially 
expressed genes (DEGs) were 
identified by comparing the two 
subgroups; these genes were 
primarily enriched in the cell 
cycle, nuclear division, and 
organelle fission.  

To create the nomogram, 
three independent 
prognostic factors - 
PSMC6, SMOX, and 
SMS-were identified, all 
of which were found to be 
elevated in LUAD cells. 

5 [38] Y. Liu et 
al., (2022) 

Development and 
Validation of Machine 
Learning Models to 

Logistic Regression 
(LR), Decision Tree 
(DT), Random 

No Yes Yes Yes CAL, AUC, 
DCA, C-index 
and Brier score 

validation cohort, 
10-fold cross-
validation

Identification of sixteen 
radiomics features selected for 

The RF classifier 
outperformed the LR, DT, 
and SVM classifiers in 
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Predict Epidermal 
Growth Factor 
Receptor Mutation in 
Non-Small Cell Lung 
Cancer: A Multi-
Center Retrospective 
Radiomics Study 

Forest (RF), 
Support Vector 
Machine (SVM) 

building the model for lung 
cancer diagnosis. 

both training and 
validation cohorts, 
achieving higher AUC, 
calibration, and C-index, 
and a lower Brier score. 
The DeLong test showed 
no significant difference 
in AUC between the 
training and validation 
cohorts for the RF 
classifier but revealed 
significant differences for 
the LR, DT, and SVM 
classifiers. 

6 [39] H. Lee et
al., (2024) 

Evaluating county-
level lung cancer 
incidence from 
environmental 
radiation exposure, 
PM2.5, and other 
exposures using 
regression and 
machine learning 
models. 

Tree-based machine 
learning (ML) 
models 

No Yes No Yes MAPE, RMSE fivefold cross-
validation 

The correlation between 
environmental radon levels and 
PM2.5 was found to be 
significant, suggesting a 
potential synergistic influence 
of both on health outcomes. 

Poisson regression: 
MAPE = 6.29, RMSE = 
12.70; Poisson random 
forest regression: MAPE 
= 1.22, RMSE = 8.01. 

7 [40] Q. Cai et 
al., (2020) 

Exploration of 
predictive and 
prognostic alternative 
splicing signatures in 
lung adenocarcinoma 
using machine 
learning methods. 

Random forest-
based classifiers, 
Cox regression 
model, random 
survival forest 
analysis, and 
forward selection 
model. 

Yes No No Yes ROC, AUC fivefold cross-
validation.  

Each ASE pair exhibited a 
complete inverse correlation 
(correlation coefficient = -1). 
The 12-ASE classifier 
effectively assessed lymph node 
metastasis (LNM) status in 
LUAD patients and identified 
crucial prognosis-related ASEs. 
A 16-ASE prognostic model 
was developed to predict overall 
survival in LUAD patients. 

The 12-ASE-based 
classifier effectively 
assessed lymph node 
metastasis (LNM) in 
LUAD patients, with an 
AUC exceeding 0.7. The 
prognostic model 
demonstrated consistent 
performance over 1, 3, 5, 
and 10 years in both the 
training and internal test 
groups. 

8 [41] Rani et 
al., (2023) 

Exploring Machine 
Learning in Lung 
Cancer: Predictive 
Modeling, Gene 
Associations, and 
Challenges 

Support Vector 
Machines, Random 
Forests, Deep 
Learning 
Architectures, 
Network-Based 
Methodologies 

Yes No Yes Yes Prediction 
Methods, Gene 
Association 
Analyses, 
Biomarker 
Identification 

Analysis includes 
diverse data 
types such as 
gene expression, 
genomic variants, 
and clinical data. 

Extensive investigation into 
various machine learning 
algorithms, focusing on their 
practical applications in 
predictive modeling, biomarker 
identification, and drug 
discovery pathways. 

Specific emphasis on the 
utilization of SVM, RF, 
logistic regression, CNNs, 
RNNs, and GCN seeks to 
provide a solid foundation 
for upcoming 
advancements in 
treatment, diagnosis, and 
prognosis. 

9 [42] Pati J. 
(2019) 

Gene Expression 
Analysis for Early 
Lung Cancer 
Prediction Using 
Machine Learning 
Techniques: An Eco-
Genomics Approach 

Advanced machine 
learning techniques 

Yes Yes Yes Yes CI, Accuracy, 
Precision, 
Recall, F-
Measure, 

Evaluation of 
gene expression 
data for lung 
cancer. Selection 
and prediction of 
the optimal 
subset of genes 
likely to cause 
lung cancer. 

Identification of the strongest 
candidate genes with accurate 
prognostic value for 
determining susceptibility to 
lung cancer. 

Strong emphasis is placed 
on utilizing gene 
expression data analysis 
and advanced machine 
learning techniques to 
identify key genes 
associated with lung 
cancer susceptibility, 
aiming to improve early 
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prediction and 
understanding of the eco-
genomics of cancer. 

10 [43] Okser et 
al., (2013) 

Genetic Variants and 
Their Interactions in 
Disease Risk 
Prediction: Machine 
Learning and Network 
Perspectives 

Predictive modeling 
approaches 

Yes Yes Yes Yes Mining 
genotype-
phenotype 
relationships 

Internal and 
external cross-
validation 

Acknowledgement of the role 
that interactions between 
genetic loci play in the 
development of complex 
phenotypic traits and human 
diseases. Highlighting the 
challenges in identifying 
genetic markers for disease risk 
prediction. Introduction of 
machine learning approaches to 
address the issue of missing 
heritability and enhance disease 
risk prediction models.

Emphasis on utilizing 
machine learning-based 
approaches to identify 
hidden interactions among 
genetic factors. 
Discussion of the 
challenges in 
implementing scalable 
algorithms for genetic 
feature selection and 
validating predictive 
models. Suggestion of 
incorporating additional 
biological information, 
such as physical protein 
interaction networks, to 
enhance the model 
construction process. 

11 [44] Wang et 
al., (2022) 

How Is the Lung 
Cancer Incidence Rate 
Associated with 
Environmental Risks? 
Machine Learning-
Based Modeling and 
Benchmarking 

Stepwise 
regression, variance 
inflation factor, and 
machine learning 
algorithms (linear 
regression, support 
vector regression, 
random forest, k-
nearest neighbors, 
Cubist model tree). 

Yes Yes No Yes RMSE, 
R-squared

5-fold cross-
validation 

Identification of risk factors 
impacting lung cancer 
incidence rates, including air 
pollution, tobacco use, 
socioeconomic status, 
employment status, marital 
status, and environmental 
factors.  

The study identified the 
Cubist model tree, 
utilizing feature selection, 
as the best-performing 
model, with an RMSE of 
3.310 and an R-squared of 
0.960. Significant 
contributors to lung 
cancer incidence included 
smoking, employment 
percentage, and other 
factors. Random forest 
models were used to 
interpret the most 
significant contributing 
variables. 

12 [45] Li et al., 
(2022) 

Prediction of lung 
cancer risk in the 
Chinese population 
with genetic and 
environmental factors 
using extreme gradient 
boosting. 

Extreme Gradient 
Boosting 
(XGBoost) 

No Yes Yes Yes P-value, AUC 10-fold cross-
validation 

A prediction model has been 
developed for the early 
detection of lung cancer in the 
Chinese population. 

The model incorporating 
SNPs and applying 
XGBoost significantly 
improved predictive 
performance, particularly 
for the squamous cell 
carcinoma (SCC) subtype. 
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ACC: Accuracy; PRE: Precision; REC: Recall; AUC: Area 
Under the Curve; PA: Performance Accuracy; N/A: Not 
Available; LASSO: Least Absolute Shrinkage and Selection 
Operator; LogReg: Logistic Regression; XGBoost: Extreme 
Gradient Boosting; Naive: Naive Bayes + SSA; LinReg+: 
Linear Regression; SVR: Support Vector Regression; K-NN: 
K-Nearest Neighbors; Cubist: Cubist Model; PSMC6:
Proteasome 26S Subunit, ATPase 6; SMOX: Spermine
Oxidase; SMS: Spermine Synthase; RotForest: Rotation
Forest; LogR: Logistic Regression; DT: Decision Tree; RF,
RF2: Random Forest; SVM: Support Vector Machines;
MLP: Multilayer Perceptron; RandSub: Random Subspace;
SMO: Sequential Minimal Optimization; CAL: Calibration
Curve; DCA: Decision Curve Analysis; C-index:
Concordance Index; MAPE: Mean Absolute Percentage
Error; RMSE: Root Mean Square Error; ROC: Receiver
Operating Characteristic.

Table I provides a summary of the included studies, focusing 
on various factors influencing prognosis, including 
environmental factors, genetic factors, and predictive 
elements. It categorizes the studies based on these factors and 
includes information such as the author(s) and year, title, 
machine learning methodology used, measures evaluated, 
validation methods, findings, and results. The table enhances 
the organization of information across different studies, 
providing a comprehensive overview of the research 
landscape in this specific area. 

A. Findings (Table I)

The studies included in the document cover a wide range of 
factors influencing prognosis, including environmental 
factors, genetic factors, and risk predictive elements using 
machine learning models across various research fields. 

1. Manuck [1] examined various conceptual models related
to gene-environment interactions in psychology,
highlighting controversy and differing opinions on the
significance of these interactions. The study suggested
that the concentration of ambient radon and PM2.5 may
have a synergistic influence on health consequences
[39].

2. The development of a risk score model based on gene
signatures linked to polyamine metabolism aimed to
predict lung adenocarcinoma (LUAD) patient prognosis
and immunotherapy response [44]. This study identified
distinct patient subgroups, correlated gene expression
profiles, and evaluated responses to immunotherapy
[44]. Additionally, the study explored the use of deep
learning architectures, random forests, and support
vector machines in biomarker identification, gene
association studies, and predictive modeling for lung
cancer, with a focus on combining multi-omics data for
comprehensive understanding [41].

3. An improved use of advanced machine learning
techniques to analyze and evaluate genetic datasets for
early lung cancer prediction was demonstrated, focusing
on identifying key genes associated with disease
susceptibility [42]. Utilizing genetic interactions in

disease risk prediction through machine learning 
techniques helps uncover undiscovered relationships 
between genomic loci, thereby increasing prediction 
accuracy and enhancing understanding of disease 
networks [43]. 

4. Wang [44] focused on polyamine metabolism-associated
gene signatures, offering insights into personalized
treatment strategies for lung adenocarcinoma patients.
The development of a prognostic model for early lung
cancer detection in the Chinese population showed
significant improvement in predictive performance,
particularly for the squamous cell carcinoma subtype,
emphasizing the importance of genetic-environment
interactions [45].

5. The association between lung cancer incidence rates and
environmental risks was explored using various machine 
learning algorithms. The Cubist model tree provided the
optimal model, exhibiting an RMSE of 3.31 and an R-
squared of 0.96. A risk score model based on 14 gene
signatures associated with polyamine metabolism
demonstrated significant prognostic value for
determining prognosis and responsiveness to
immunotherapy in lung cancer patients [44].

6. The association between lung cancer incidence rates and
environmental risks showed high statistical measures,
indicating accurate lung cancer risk prediction through
machine learning techniques [44].

B. Findings (Table II)

The findings highlight the complexity of factors influencing 
prognosis and the effectiveness of using machine learning in 
predictive modeling. The research underscores the 
importance of integrating genetic, environmental, and 
prognostic elements for a comprehensive understanding and 
prediction of outcomes in lung cancer. Machine learning 
methods have been widely employed to explore predictive 
and prognostic elements in lung cancer. In this research, the 
Rotation Forest model achieved an impressive AUC of 0.993, 
with high accuracy, precision, recall, and confidence interval 
scores, demonstrating the effectiveness of machine learning. 
One notable study on lung adenocarcinoma utilized LASSO 
Cox regression to identify a 16-ASE signature, achieving 
good results with an average confidence interval of 0.789 and 
an AUC exceeding 0.7 in fivefold cross-validation.  

The study conducted within the Chinese population 
employed logistic regression and Extreme Gradient Boosting 
(XGBoost) to predict lung cancer risk, incorporating 61 SNPs 
and achieving an average ρ-value of <0.05 with an AUC of 
>0.7. Additionally, the Naive Bayes and SSA models
demonstrated high accuracy (>0.98) in predicting lung cancer 
patient survival within five years by utilizing Naive Bayes
and SSA biomarker genes. Studies employing diverse
algorithms like LASSO Cox regression and XGBoost
enhance predictive accuracy and survival prognosis.
Environmental risk analysis and gene signature-based
models further underscore the interdisciplinary approach,
promising tailored interventions and improved patient
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outcomes in lung cancer care. These findings collectively 
emphasize the importance of utilizing machine learning 
techniques to refine predictive and prognostic models for 

lung cancer, integrating genetic, environmental, and 
biomarker data to advance patient outcomes and treatment 
strategies. 

TABLE II OUTCOME OF FINDINGS 
Sl. 
No. Ref. Year Model Biomarkers Datasets Variables ρ-value Confidence 

Interval PA/AUC 

1 [40] 2020 LASSO Cox 
regression 16-ASE signature

TCGA database, 
572 samples of 
LUADAS dataset, 
502 samples of 
LUAD-AS dataset 

ASEs, clinical 
variables 0.054 

0.766-0.812 
(Average: 
0.789)  

AUC > 0.7 
(fivefold 
cross-
validation) 

2 [45] 2022 

Logistic 
Regression 

61 Single nucleotide 
polymorphisms 
(SNPs) 

Chinese 
population 
Genotype Dataset: 
(974 lung cancer 
patients and 1004 
healthy people) 

Age, gender, 
smoking 
intensity, 
smoking 
duration, family 
history 

0.0253 

0.718-0.765 
(95%) 
(Average: 
0.7415) 

AUC 0.742 

Extreme 
Gradient 
Boosting 
(XGBoost) 

<0.001 

0.737-0.782 
(95%) 
(Average: 
0.7595)  

AUC: 0.759 

3  [7] 2023 

Naive Bayes + 
SSA 

Biomarker genes 
Wisconsin 
Prognostic Lung 
Cancer 

Survival time 
with lung cancer 

High N/A 

ACC:  
98.78 
PRE: 98.6 
REC: 98.4 

Random Forest 

ACC: 
0.92.8 
PRE: 88.2 
REC: 93.4 

4 [44] 2022 

Linear 
regression, 
Support vector 
regression, K-
nearest 
neighbor, 
Cubist model 
Random Forest 
model 

CO, NO2, SO2, O3, 
PM10, VEHICLES,  
SMOKERS, NO2, 
EMPLOYED, 
FACTORIES 

Taiwan 20 Risk Factors  N/A 
1.68 - 4.62 
(Average: 3.15) 
95% (CI) 

96% 

5 [37] 2023 Risk Score 59 polyamines 
metabolism genes 

TCGA; 
59 polyamines 
metabolism genes 

Polyamines 
metabolism 
genes 

< 0.05 N/A 

AUC values 
PSMC6: 
0.822  
SMOX: 
0.802 
SMS: 0.818 

6 [18] 2022 Rotation 
Forest Metabolic markers 309 Public dataset Lung cancer Risk 

factors N/A N/A 

AUC: 
99.3% 
ACC: 
97.1% 
PRE: 97.1% 
REC: 
97.1% 

7 [38] 2022 Random Forest Radiomics features 
from CT images 

346 patients from 
four centers 

16 core 
radiomics 
features 

<0. 05 N/A 

AUCs 
LR: 0.658 
DT: 0.567 
RF: 0.880 
SVM: 0.765 

8 [42] 2018 

Multilayer 
Perceptron, FABP4, 

Platelet/endothelial 
cell adhesion 
molecule, Four and a 
half LIM domains1, 
Amine oxidase, 
copper containing 3, 
C-type lectin domain
family 3, member B, 
Selenoprotein P, 
plasma, 1

7129 genes 

gene expression 
data for the Lung 
cancer Via Kent 
Ridge Bio-
Medical Dataset 
Repository 

N/A 

± 1.96 

ACC: 86.67 
PRE: 
0.8714 
REC: 
0.8315 

Random 
Subspace,  ± 1.96 

ACC: 68.33 
PRE: 
0.6458 
REC: 
0.6025 

SMO ± 1.96 

ACC: 91.67 
PRE: 
0.9125 
REC: 
0.9029 
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TABLE III STATISTICAL SUMMARY OF OUTCOME 

Sl. No. Models Year ρ-value Confidence Interval 
Performance 

AUC 
Accuracy Precision Recall 

1 LASSO 2020 0.054 0.766-0.812 - - - > 0.70
2 LogReg 2022 0.0253 0.718-0.765 - - - 0.742 

XGBoost 2022 <0.001 0.737-0.782 - - - 0.759 
3 Naive 2023 - - 0.988 0.986 0.984 - 

RF2 2023 - - 0.928 0.882  0.934 - 
4 LinReg+ 2022 - 1.68 - 4.62 - - - 0.960 
5 PSMC6 2023 

< 0.05 - - - - 
0.822 

SMOX 2023 0.802 

SMS 2023 0.818 
6 RotForest 2022 - - 0.971 0.971 0.971 0.993 
7 LogR 2022 

<0. 05 - - - - 

0.658 

DT 2022 0.567 
RF 2022 0.880 
SVM 2022 0.765 

8 Mpercept 2018 - -1.96 - 1.96 0.867 0.871 0.832 - 
RandSub 2018 - -1.96 - 1.96 0.683 0.646 0.603 - 
SMO 2018 - -1.96 - 1.96 0.917 0.913 0.903 - 

The accuracy, precision, and recall values across the models 
reflect their ability to make correct predictions and minimize 
false positives and false negatives, with average mean values 
of 0.892, 0.878, and 0.871, respectively. The models 
recorded >0.870 (>87%) in the TRI-performance rating and 
an overall rate of 0.881 (88.1%). Models such as Naive Bayes 
showed optimal results with regard to accuracy, precision, 
and recall. Models with lower ρ-values and narrower 
confidence intervals are more consistent and reliable in their 
predictions. The confidence intervals and ρ-values provide 

insights into the statistical significance and reliability of the 
predictions made by each model. 

C. Model Performance Metrics

The models exhibited a wide range of performance metrics, 
including accuracy, precision, recall, confidence intervals, 
AUC values, and ρ-values. Models such as Rotation Forest, 
XGBoost, and Multilayer Perceptron demonstrated high 
AUC values, indicating their strong predictive capabilities in 
distinguishing between positive and negative classes. 

Fig. 2 Performance Accuracy 
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D. Mean AUC Performance

The twelve AUC datasets are summed up to give an average 
AUC value, as seen in the calculation below: 

Sum of AUC values = (0.70 + 0.742 + 0.759 + 0.960 + 0.822 
+ 0.802 + 0.818 + 0.993 + 0.658 + 0.567 + 0.880 + 0.765) =
9.466

Number of AUC values (n) = 12 

Mean AUC = Sum of AUC values 
Number of AUC values

 = 9.466 
12

 ≈ 0.789 

The mean AUC of approximately 0.789 suggests that the 
predictive models evaluated in the research exhibit a 
moderate to good level of discrimination ability in 
distinguishing between classes.  

Fig. 3 Area under the curve statistics 

This indicates that the models performed reasonably well in 
terms of predictive accuracy, although individual model 
performance may vary. Further analysis could explore factors 
influencing model performance and identify potential areas 
for improvement. 

E. AUC Variability Check using Standard Deviation

(0.700 - 0.789)^2 ≈ 0.007921 
(0.742 - 0.789)^2 ≈ 0.002209 
(0.759 - 0.789)^2 ≈ 0.000900 
(0.960 - 0.789)^2 ≈ 0.029241 
(0.822 - 0.789)^2 ≈ 0.001089 
(0.802 - 0.789)^2 ≈ 0.000169 
(0.818 - 0.789)^2 ≈ 0.000841 
(0.993 - 0.789)^2 ≈ 0.041616 
(0.658 - 0.789)^2 ≈ 0.017161 
(0.567 - 0.789)^2 ≈ 0.049284 
(0.880 - 0.789)^2 ≈ 0.008281 
(0.765 - 0.789)^2 ≈ 0.000576 

Standard Deviation (𝜎𝜎) =  �(𝑋𝑋− 𝑋𝑋�)2

𝑛𝑛
Sum of the squared differences ≈ 0.159288 
 n = 12 

Variance ≈ 0.159288
12

  ≈ 0.013274 
Standard Deviation ≈ √0.013274 ≈ 0.1152 

The standard deviation of the AUC values is approximately 
0.1152. 

The standard deviation of approximately 0.1152 indicates the 
variability of the AUC values around the mean AUC of 
0.789. A smaller standard deviation suggests that the AUC 
values are closer to the mean, indicating less variability 
among model performances. Conversely, a larger standard 
deviation implies greater variability among the AUC values.  

In this case, a standard deviation of 0.1152 indicates 
moderate variability in the AUC values, suggesting that while 
the mean AUC is relatively stable, there are some differences 
in the performance of the predictive models. Further analysis 
is recommended to investigate factors contributing to this 
variability and explore strategies to improve model 
consistency. 

F. Confidence Intervals and ρ-values

The results from Table III indicate that machine learning 
models are crucial for predicting lung cancer risk and are 
highly effective when considering genetic and environmental 
factors. The high AUC values, accuracy rates, and precision 
scores of certain models underscore their potential to enhance 
personalized treatment strategies and clinical decision-
making in lung cancer care. 
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TABLE IV OUTCOME OF Ρ-VALUES 
Models 2020 2022 2023 

LASSO 0.054 
LogReg 0.0253 
XGBoost <0.001 

PSMC6 < 0.05 
SMOX < 0.05 
SMS < 0.05 

LogR < 0.05 
DT < 0.05 
RF < 0.05 

SVM < 0.05 

The systematic analysis conducted on various models yielded 
p-values indicating their statistical significance. Among the
models evaluated, LogReg, XGBoost, PSMC6, LogR, DT,
RF, SVM, and LogR demonstrated significant evidence to
reject the null hypothesis, with p-values less than 0.05. This
suggests that these models significantly differ from the null
hypothesis and can be effective in their respective tasks.
Conversely, the LASSO model did not exhibit statistically
significant evidence to reject the null hypothesis, with p-
values exceeding 0.05. Consequently, while the LASSO
model may still have utility, there is insufficient statistical
evidence to conclude that it significantly outperformed the
null hypothesis, warranting further investigation or
consideration of alternatives.

Fig. 3 ρ-Value Scale 

Based on the research findings shown in Fig. 3, 9 out of the 
10 models exhibit statistically significant results (p < 0.05), 
indicating that they likely have a meaningful impact on 
predicting lung cancer risk based on environmental and 
genetic interactions. This suggests promising avenues for 
further exploration and potential application in clinical 
settings. However, the LASSO model, with p-values greater 
than 0.05, may warrant closer examination. Although it did 
not achieve statistical significance in this study, it does not 
necessarily imply it is without merit. Further investigation is 
recommended to determine why it did not perform as 
expected and whether additional data collection could 
enhance its predictive accuracy. 

IV. DISCUSSION

The extensive utilization of machine learning methods in 
lung cancer research - focusing on predictive and prognostic 
elements and applying various models, including Rotation 
Forest, LASSO Cox regression, logistic regression, 
XGBoost, Naive Bayes, and SSA - exhibits high accuracy, 
precision, recall, and AUC values, showcasing their 
effectiveness in leveraging genetic and environmental factors 
for predictive modeling. The systematic analysis reveals 
significant findings, with most models demonstrating 
statistically significant results (p < 0.05) in predicting lung 
cancer risk based on environmental and genetic interactions, 
indicating promising potential applications in clinical 
settings. However, models that did not achieve statistical 
significance warrant further examination for performance 
improvement. Additional research is needed to enhance 
model performance, identify factors influencing variability, 
and improve predictive accuracy for personalized treatment 
strategies. 

A. General Interpretation of Results

The studies aim to provide valuable insights into various 
aspects of research and management in the area of lung 
cancer. From predicting lung cancer incidence rates based on 
environmental exposures to developing prognostic models 
for overall survival and identifying candidate genes 
implicated in lung cancer development, the results offer 
significant contributions to the field. For example, machine 
learning models outperform traditional regression models in 
capturing the mutual influence between environmental 
exposures and health outcomes. 

B. Limitations of Evidence

Regarding the limitations of evidence, the studies 
acknowledged potential issues such as sample size, data 
quality, biases in data selection, and the general relevance of 
findings [37]. These limitations may affect the validity and 
reliability of the results, emphasizing the need for further 
empirical analysis using larger and more diverse population 
samples to ensure the accuracy of the overall results and 
conclusions drawn from the research. 

C. Limitations of Review Processes

The review processes discussed in the document have high 
coverage, which helps to minimize errors in the review 
process. However, limitations in comprehensiveness and 
critical appraisal of the included studies may exist. These 
limitations could impact the credibility of the review findings 
and the reliability of the conclusions drawn from the 
reviewed evidence. 

D. Implications for Practice, Policy, and Future Research

The results of the studies suggest significant implications for 
public health practice, policy interventions, and future 
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research in the field of lung cancer. Recommendations 
include considering multiple environmental exposures in 
assessing lung cancer risk, developing targeted interventions 
based on machine learning predictions, and exploring gene-
environment interactions for personalized treatment 
strategies. These implications highlight the importance of 
translating research findings into clinical applications, 
advancing policy initiatives to support research development, 
and enhancing patient outcomes through evidence-based 
interventions. 

V. CONCLUSION

Lung cancer risk prediction and treatment using machine 
learning techniques have made significant strides. The 
specific objective across these studies is to build a 
comprehensive understanding of the origins of lung cancer, 
identify prognostic biomarkers, and develop predictive 
models for improved patient outcomes. Findings highlight 
the multifactorial nature of lung cancer, emphasizing the 
association between environmental exposures, genetic 
factors, and molecular pathways. Various machine learning 
models, including LASSO, Logistic Regression, XGBoost, 
Naive Bayes, and Rotation Forest, were explored. Key 
findings from the statistical summary and performance 
accuracy chart include AUC values with an average score of 
0.789, a tri-performance rating (accuracy, precision, recall) 
of 0.881, confidence intervals, and ρ-values. Notably, the 
Rotation Forest model achieved the highest AUC of 0.993, 
indicating excellent predictive capabilities. These predictive 
models demonstrate strong performance in risk stratification 
and prognostic prediction, with implications for personalized 
medicine and clinical decision-making. The integration of 
machine learning approaches with multidimensional data has 
greatly enhanced our understanding of lung carcinoma and 
clinical management. This integration paves the way for 
precision oncology strategies and tailored interventions to 
improve patient outcomes and reduce the global burden of 
lung cancer. 

REFERENCES 

[1] S. B. Manuck and J. M. McCaffery, “Gene-Environment Interaction,”
Annu. Rev. Psychol., vol. 65, no. 1, pp. 41-70, Jan. 2014,               
doi: 10.1146/annurev-psych-010213-115100. 

[2] G. E. McClearn, “Nature and nurture: Interaction and coaction,” Am.
J. Med. Genet. Part B Neuropsychiatr. Genet., vol. 124B, no. 1,        
pp. 124-130, Jan. 2004, doi: 10.1002/ajmg.b.20044. 

[3] C.-H. Yang, Y.-D. Lin, C.-Y. Yen, L.-Y. Chuang, and H.-W. Chang,
“A Systematic Gene-Gene and Gene-Environment Interaction
Analysis of DNA Repair Genes XRCC1, XRCC2, XRCC3, XRCC4,
and Oral Cancer Risk,” Omi. A J. Integr. Biol., vol. 19, no. 4,   
pp. 238-247, Apr. 2015, doi: 10.1089/omi.2014.0121. 

[4] G. Vogt, “Environmental Adaptation of Genetically Uniform
Organisms with the Help of Epigenetic Mechanisms—An Insightful
Perspective on Ecoepigenetics,” Epigenomes, vol. 7, no. 1, Mar. 2023, 
doi: 10.3390/epigenomes7010001. 

[5] L. M. Hernandez, D. G. Blazer, and A. S. Institute of Medicine (U.S.), 
Genes, Behavior, and the Social Environment: Moving Beyond the
Nature/Nurture Debate. National Academies Press, 2006. 

[6] G. Sirugo, S. M. Williams, and S. A. Tishkoff, “The Missing Diversity 
in Human Genetic Studies,” Cell, vol. 177, no. 1, pp. 26-31, Mar. 2019, 
doi: 10.1016/j.cell.2019.02.048. 

[7] S. Kukreja, M. Sabharwal, M. A. Shah, and D. S. Gill, “A Heuristic
Machine Learning-Based Optimization Technique to Predict Lung
Cancer Patient Survival,” Comput. Intell. Neurosci., vol. 2023,
p. 4506488, 2023, doi: 10.1155/2023/4506488. 

[8] N. M. Carleton, G. Lee, A. Madabhushi, and R. W. Veltri, “Advances
in the Computational and Molecular Understanding of the Prostate
Cancer Cell Nucleus,” J. Cell. Biochem., vol. 119, no. 9, pp. 7127-
7142, Sep. 2018, doi: 10.1002/jcb.27156. 

[9] L. Pan et al., “Artificial Intelligence Empowered Digital Health
Technologies in Cancer Survivorship Care: A Scoping Review,” Asia-
Pacific J. Oncol. Nurs., vol. 9, no. 12, p. 100127, Dec. 2022,
doi: 10.1016/j.apjon.2022.100127. 

[10] A. Choudhary, A. Anand, A. Singh, and P. R., “Machine Learning-
Based Ensemble Approach in Prediction of Lung Cancer
Predisposition Using XRCC1 Gene Polymorphism,” J. of, vol. 2023,
pp. 1-10, Taylor & Francis, 2023, doi: 10.1080/07391102 
.2023.2242492. 

[11] J. A. Cruz and D. S. W., “Applications of Machine Learning in Cancer
Prediction and Prognosis,” Journals SAGEPUB, [Online]. Available:
https://journals.sagepub.com/doi/abs/10.1177/117693510600200030. 

[12] D. Soldato et al., “The Future of Breast Cancer Research in the
Survivorship Field,” Oncol. Ther., vol. 11, no. 2, pp. 199-229, 
Jun. 2023, doi: 10.1007/s40487-023-00225-8. 

[13] K. C. Thandra, A. Barsouk, K. Saginala, J. S. Aluru, and A. Barsouk,
“Epidemiology of Lung Cancer,” Termedia Publishing House Ltd., 
2021, doi: 10.5114/wo.2021.103829. 

[14] K. Chaitanya Thandra, A. Barsouk, K. Saginala, J. Sukumar Aluru, and 
A. Barsouk, “Epidemiology of Lung Cancer,” Współczesna Onkol., 
vol. 25, no. 1, pp. 45-52, 2021, doi: 10.5114/wo.2021.103829. 

[15] W. A. Cooper, D. C. L. Lam, S. A. O’Toole, and J. D. Minna,
“Molecular Biology of Lung Cancer,” J. Thorac. Dis., vol. 5 Suppl 5,
pp. S479-90, Oct. 2013, doi: 10.3978/j.issn.2072-1439.2013.08.03. 

[16] M. Zheng, Classification and Pathology of Lung Cancer, W.B.
Saunders, 2016, doi: 10.1016/j.soc.2016.02.003. 

[17] J. A. Barta, C. A. Powell, and J. P. Wisnivesky, Global Epidemiology
of Lung Cancer, Ubiquity Press, 2019, doi: 10.5334/aogh.2419. 

[18] E. Dritsas and M. Trigka, “Lung Cancer Risk Prediction with Machine 
Learning Models,” Big Data Cogn. Comput., vol. 6, no. 4, p. 139,
Nov. 2022, doi: 10.3390/bdcc6040139. 

[19] O. Ernest, O. Komolafe, S. O., and A. Oludele, “Ontology: A Case for
Disease and Drug Knowledge Discovery,” Commun. Appl. Electron.,
vol. 5, no. 9, pp. 6-13, Sep. 2016, doi: 10.5120/cae2016652362. 

[20] A. Shankar et al., “Environmental and Occupational Determinants of
Lung Cancer,” Transl. Lung Cancer Res., vol. 8, no. Suppl 1, pp. S31-
S49, May 2019, doi: 10.21037/tlcr.2019.03.05. 

[21] J. A. Barta, C. A. Powell, and J. P. Wisnivesky, “Global Epidemiology 
of Lung Cancer,” Ann. Glob. Heal., vol. 85, no. 1, Jan. 2019,
doi: 10.5334/aogh.2419. 

[22] N. Ghaffar Nia, E. Kaplanoglu, and A. Nasab, “Evaluation of Artificial 
Intelligence Techniques in Disease Diagnosis and Prediction,” Discov. 
Artif. Intell., vol. 3, no. 1, p. 5, Jan. 2023, doi: 10.1007/s44163-023-
00049-5. 

[23] Y. Li, X. Wu, P. Yang, G. Jiang, and Y. Luo, “Machine Learning for
Lung Cancer Diagnosis, Treatment, and Prognosis,” Genomics
Proteomics Bioinformatics, vol. 20, no. 5, pp. 850-866, 2022,
doi: 10.1016/j.gpb.2022.11.003. 

[24] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D.
I. Fotiadis, “Machine Learning Applications in Cancer Prognosis and
Prediction,” Comput. Struct. Biotechnol. J., vol. 13, pp. 8-17, 2015,
doi: 10.1016/j.csbj.2014.11.005. 

[25] F. Alharbi and A. Vakanski, “Machine Learning Methods for Cancer
Classification Using Gene Expression Data: A Review,”
Bioengineering, vol. 10, no. 2, p. 173, Jan. 2023, doi: 10.3390/bio 
engineering10020173. 

[26] A. A. Adegbenjo et al., “Design and Analysis of an Automated IoT
System for Data Flow Optimization in Higher Education Institutions,” 
J. Eur. des Systèmes Autom., vol. 56, no. 5, pp. 889-897, Oct. 2023,
doi: 10.18280/jesa.560520. 

[27] G. H. M. Sousa, R. A. Gomes, E. O. de Oliveira, and G. H. G. Trossini, 
“Machine Learning Methods Applied for the Prediction of Biological
Activities of Triple Reuptake Inhibitors,” J. Biomol. Struct. Dyn.,
vol. 41, no. 20, pp. 10277-10286, Dec. 2023, doi: 10.1080/07391102. 
2022.2154269. 

57 AJCST Vol.13 No.1 January-June 2024

Environmental and Genetic Interaction Models for Predicting Lung Cancer Risk Using Machine Learning: A Systematic 
Review and Meta-Analysis



[28] S. Suganyadevi, V. Seethalakshmi, and K. Balasamy, “A Review on
Deep Learning in Medical Image Analysis,” Int. J. Multimed. Inf. Retr.,
vol. 11, no. 1, pp. 19-38, 2022, doi: 10.1007/s13735-021-00218-1. 

[29] S. Bindas and E. Onuiri, “A Deep Learning Approach to Speech
Recognition for Detection of Mental Disorders,” Curr. TRENDS Inf.
Commun. Technol. Res., vol. 2, no. 1, pp. 28-46, 2023, doi: 10.61867/ 
pcub.v2i1a.042. 

[30] E. E. Onuiri, O. Akande, O. B. Kalesanwo, T. Adigun, K. Rosanwo,
and K. C. Umeaka, “A Systematic Review of Machine Learning
Prediction Models for Colorectal Cancer Patient Survival Using
Clinical Data and Gene Expression Profiles,” Rev. d’Intelligence Artif.,
vol. 37, no. 5, pp. 1273-1280, 2023, doi: 10.18280/ria.370520. 

[31] Z. Sajjadnia, R. Khayami, and M. R. Moosavi, “Preprocessing Breast
Cancer Data to Improve the Data Quality, Diagnosis Procedure, and
Medical Care Services,” Cancer Inform., vol. 19, p. 117693 
512091795, Jan. 2020, doi: 10.1177/1176935120917955. 

[32] H. Mohajan and H. K. Mohajan, “Two Criteria for Good
Measurements in Research: Validity and Reliability,” Munich
Personal RePEc Archive, 2017. 

[33] R. Caso et al., “The Underlying Tumor Genomics of Predominant
Histologic Subtypes in Lung Adenocarcinoma,” J. Thorac. Oncol., vol. 
15, no. 12, pp. 1844-1856, Dec. 2020, doi: 10.1016/j.jtho.2020.08.005. 

[34] Q. Li et al., “Combining Autophagy and Immune Characterizations to
Predict Prognosis and Therapeutic Response in Lung
Adenocarcinoma,” Front. Immunol., vol. 13, 2022,                        
doi: 10.3389/fimmu.2022.944378. 

[35] M. Amir-Behghadami and A. Janati, “Population, Intervention,
Comparison, Outcomes and Study (PICOS) Design as a Framework to 
Formulate Eligibility Criteria in Systematic Reviews,” Emerg. Med. J.,
vol. 37, no. 6, pp. 387-387, Jun. 2020, doi: 10.1136/emermed-2020-
209567. 

[36] M. J. Page et al., “The PRISMA 2020 Statement: An Updated
Guideline for Reporting Systematic Reviews,” BMJ, p. n71,    
Mar. 2021, doi: 10.1136/bmj.n71. 

[37] N. Wang, M. Chai, L. Zhu, J. Liu, C. Yu, and X. Huang, “Development 
and Validation of Polyamines Metabolism-Associated Gene
Signatures to Predict Prognosis and Immunotherapy Response in Lung 
Adenocarcinoma,” Front. Immunol., vol. 14, 2023, doi: 10.3389/ 
fimmu.2023.1070953. 

[38] Y. Liu et al., “Development and Validation of Machine Learning
Models to Predict Epidermal Growth Factor Receptor Mutation in
Non-Small Cell Lung Cancer: A Multi-Center Retrospective
Radiomics Study,” Cancer Control, vol. 29, 2022,
doi: 10.1177/10732748221092926. 

[39] H. Lee et al., “Evaluating County-Level Lung Cancer Incidence from
Environmental Radiation Exposure, PM(2.5), and Other Exposures
with Regression and Machine Learning Models,” Environ. Geochem.
Health, vol. 46, no. 3, p. 82, 2024, doi: 10.1007/s10653-023-01820-4. 

[40] Q. Cai et al., “Exploration of Predictive and Prognostic Alternative
Splicing Signatures in Lung Adenocarcinoma Using Machine
Learning Methods,” J. Transl. Med., vol. 18, no. 1, 2020,
doi: 10.1186/s12967-020-02635-y. 

[41] K. M. S. Rani and V. K. Prasad, “Exploring Machine Learning in Lung 
Cancer: Predictive Modelling, Gene Associations, and Challenges,”
Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 6s, pp. 490-499, 2023,
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-85167990741&partnerID=40&md5=d96b5427eecc8ea6a8d04
218bbf9290c. 

[42] J. Pati, “Gene Expression Analysis for Early Lung Cancer Prediction
Using Machine Learning Techniques: An Eco-Genomics Approach,”
IEEE Access, vol. 7, pp. 4232-4238, 2019, doi: 10.1109/ACCESS.
2018.2886604. 

[43] S. Okser, T. P.-B. Mining, “Genetic Variants and Their Interactions in
Disease Risk Prediction - Machine Learning and Network
Perspectives,” Biodata Mining, vol. 6, no. 5, 2013, [Online]. Available:
https://biodatamining.biomedcentral.com/articles/10.1186/1756-
0381-6-5. 

[44] K.-M. Wang, K.-H. Chen, C. A. Hernanda, S.-H. Tseng, and K.-J.
Wang, “How Is the Lung Cancer Incidence Rate Associated with
Environmental Risks? Machine-Learning-Based Modeling and
Benchmarking,” Int. J. Environ. Res. Public Health, vol. 19, no. 14,
2022, doi: 10.3390/ijerph19148445. 

[45] Y. Li et al., “Prediction of Lung Cancer Risk in Chinese Population
with Genetic-Environment Factor Using Extreme Gradient Boosting,” 
Cancer Manag. Res., vol. 11, no. 23, pp. 4469-4478, 2022,
doi: 10.1002/cam4.4800. 

58AJCST Vol.13 No.1 January-June 2024

Ernest E. Onuiri, Bright G. Akwaronwu and Kelechi C. Umeaka




