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Abstract - Parkinson’s Disease (PD) is a serious 
neurodegenerative disorder, with over 10 million cases globally 
in 2020, significantly affecting patients’ quality of life. The 
progression of the disease has been statistically proven, 
underscoring the importance of early diagnosis. As many as 
80% of those diagnosed with PD begin to experience spinal 
degeneration, leading to other impairments and disabilities 
within approximately 10 years. Moreover, up to 35% of patients 
require assistance to walk or perform daily living activities 
within 5 years of diagnosis. The proposed study employs a 
neural convolutional network (CNN) to predict PD using 64x64 
pixel hand-drawn images from 244 PD patients and 228 healthy 
individuals. K-nearest neighbors (KNN)-based feature 
extraction was applied as a data pre-processing method before 
feeding the data into the CNN layers. Model training involved 
tuning hyper parameters and testing several learning rates, 
ranging from 0.1 to 0.00001. The highest learning rate of 0.001 
yielded the best performance, achieving classification 
accuracies, precision, sensitivity, and F1 score of 97.93%, 92%, 
80%, and 86%, respectively, with a 5% increase in performance 
accuracy. These results demonstrate the model’s effective 
ability to discriminate between healthy individuals and PD 
patients based on hand-drawn samples. 
Keywords: Parkinson’s Disease (PD), Neurodegenerative 
Disorder, Neural Convolutional Network (CNN), Feature 
Extraction, Classification Accuracy 

I. INTRODUCTION

Parkinson’s Disease (PD) is defined as a progressive disorder 
of the central nervous system, affecting approximately 10 
million people worldwide as of 2020. It is characterized by 
impairments in motor functions, which include tremors, 
muscle rigidity, and difficulties with movement [1]. 
Parkinson’s Disease leads to decreased motor function, 
resulting in tremors, stiffness, and general movement 
impairment. As a midbrain-affecting neurological condition, 
the thalamic area in the midbrain houses the substantia nigra, 
which contains a large number of dopamine neurons. The 
brain produces a chemical called dopamine, which is 
essential for neuronal communication. However, Parkinson’s 
Disease occurs when there is insufficient dopamine flowing 
through the body. Symptoms include hand tremors, stiffness 
in the arms, legs, and jaw, impaired balance and coordination, 
speech difficulties, and other motor challenges [2]. Early 

detection of the disease is critical for managing symptoms 
and improving the quality of life for those affected [3]. 

Ranked next to Alzheimer’s disease, Parkinson’s Disease is 
the second leading cause of degenerative diseases, with 
nearly 6.3 million people suffering from it globally [4]. It is 
caused by the loss of dopamine-producing neurons and 
typically affects individuals over the age of 60. Although 
there is no treatment for Parkinson’s Disease, early detection 
may mitigate the illness. Researchers have focused on 
identifying and monitoring Parkinson’s Disease through gait 
analysis [5] and speech analysis data [6]. Notably, about 90% 
of Parkinson’s Disease patients exhibit motor deficits [7]. 

In the current era of artificial intelligence (AI), many diseases 
are modeled using machine learning (ML) to better 
understand disease behavior (including infectious diseases) 
and their transmission from hosts to targets. This presents the 
potential to reduce the impact of disorders, such as 
Parkinson’s Disease, for which no known treatment exists. 
The analytical and predictive capabilities of machine learning 
algorithms facilitate this process [8]. Proponents of AI 
describe it as the scientific endeavor to create physical 
devices that replicate human intellect. Conversely, machine 
learning is a mathematically constructed technique that 
enables AI technologies to learn intelligently using well-
refined datasets. The study in [9] identified that the capability 
of machine learning and AI to automate accurate pattern 
detection has contributed to their increasing popularity. 

Given the prevalence of Parkinson’s Disease, early diagnosis 
is crucial to provide patients with the appropriate treatment 
and prognostic information. However, since the movement 
symptoms may resemble those of other illnesses, obtaining 
an accurate early diagnosis can be challenging. Parkinson’s 
Disease is primarily diagnosed through clinical assessments 
and patient examination data. In some cases, brain imaging 
may support the diagnosis; however, no diagnostic tests are 
entirely accurate or specific for Parkinson’s Disease. 
According to a study conducted in [10], approximately 10-
25% of Parkinson’s Disease cases are misdiagnosed, and it 
takes an average of 2.9 years to achieve 90% diagnostic 
accuracy. The most reliable method for determining the 
disease’s identity remains autopsy. 
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In summary, diagnosing Parkinson’s Disease poses 
significant challenges. The detection of Parkinson’s Disease 
can be difficult, as no medical test can identify the disease 
until notable physical symptoms manifest, which are often 
detectable only in rare cases, except for tremors observed 
during writing. This tremor is considered the most common 
symptom noticeable in nearly every patient with Parkinson’s 
Disease. The application of advanced AI technologies 
presents an opportunity to develop automated diagnostic 
systems that can aid in detecting Parkinson’s Disease in its 
early stages, providing critical support for early intervention. 
To identify Parkinson’s Disease and address associated 
diagnostic challenges, deep learning (DL) algorithms based 
on various diagnostic techniques can be implemented. 
Therefore, this study considers the use of a handwriting 
image dataset to train a deep learning algorithm that predicts 
whether a patient has Parkinson’s Disease. 

A. Statement of the Problem

Parkinson’s disease is the second most common 
neurodegenerative disease after Alzheimer’s, characterized 
by the degeneration of the central nervous system, which 
controls movements, posture, and balance. Approximately 10 
million people are diagnosed with Parkinson’s globally. 
Despite numerous attempts, no medical treatment has been 
found to be beneficial in either controlling or halting the 
disease. Various diagnostic methodologies, including 
neurological assessments, Support Vector Classifiers, 
Random Forests, Artificial Neural Networks, and K-Nearest 
Neighbors, have been employed for the detection of the 
disease. However, the accuracy reported for Parkinson’s 
disease detection using these methods has been very low due 
to challenges in analyzing image datasets. To overcome this 
limitation, the current paper proposes hand-drawn image-
based prediction of Parkinson’s disease using convolutional 
neural networks (CNNs) and examines the effects of varied 
learning rates on this process. 

B. Objective of the Study

The main objective of the study is to develop a system for 
predicting Parkinson’s disease using a Convolutional Neural 
Network (CNN) model with different learning rates. The 
specific objectives are to: 

1. Obtain and pre-process the image dataset into a machine
learning (ML) acceptable format.

2. Design the deep learning model for predicting
Parkinson’s disease.

3. Implement the model.
4. Evaluate the implemented model.

C. Research Questions
1. How do accuracy, precision, and recall metrics vary with

different learning rates in Convolutional Neural Network 
(CNN) models for predicting Parkinson’s disease?

2. What is the overall performance difference between
CNN models trained on spiral image datasets versus
those trained on wavy image datasets?

3. What are the comparative performances of CNN models
implemented with different learning rates in predicting
Parkinson’s disease?

II. REVIEW OF LITERATURE

Driven by the critical need for early diagnosis, machine 
learning is revolutionizing Parkinson’s disease research. 
Leveraging diverse data sources, researchers are developing 
increasingly sophisticated models for disease identification 
and prediction. 

The study by Y. Zhang [11] utilized support vector machines 
and random forests as machine learning approaches in the 
analysis of gait data for predicting the likelihood of suffering 
from Parkinson’s disease. The results were promising, 
indicating the potential of these models for early recognition 
of the disease. Likewise, S. M. A. Asaduzzaman Sakib et al., 
[12] investigated the use of deep learning to predict the onset
of Parkinson’s disease from neuroimaging data. This work
emphasized the superiority of convolutional neural networks
(CNNs) in MRI studies, thus providing a solution for imaging 
the disease and its follow-up. Additionally, the research
conducted in [13] incorporated data gathered from wearable
devices into machine learning to create a predictive model.
Their model demonstrated a high degree of precision in
identifying motor symptoms, paving the way for possible
early intervention approaches.

The study by M. B. Makarious et al., [14] aimed to enhance 
the risk assessment model for developing Parkinson’s disease 
by integrating genetic, clinical, and epidemiological data 
with machine learning algorithms. It was found that using 
various types of information produced from in vivo and 
clinical data sources improves accuracy, particularly for 
disease diagnosis, thereby underscoring the importance of a 
multimodal perspective. Overall, these studies indicate that 
machine learning models have the potential to predict 
whether an individual has Parkinson’s disease through gait 
analysis, neuroimaging, sensors, and genetic data. While the 
results are encouraging, further study is needed to enhance 
the models’ robustness, generalizability, and application in 
clinical settings. 

In predicting the accuracy of detection models, the study in 
[15] revealed that the nature of the dataset significantly
contributes to enhancing prediction model accuracy. Feature
selection and classification techniques were explored in [16],
focusing on methods such as support vector machines (SVM)
and artificial neural networks (ANN) to classify Parkinson’s
disease from other conditions with a high level of accuracy.
Similarly, [17] employed wearable sensors and deep learning
models, comprising CNNs and recurrent neural networks
(RNNs), to detect patterns and variations accompanying the
development of Parkinson’s disease.

Studies conducted by P. Arora, L. Ali, and S. Chakraborty 
[18]-[20] also utilized similar datasets to detect Parkinson’s 
disease from a given handwritten image dataset. Another 
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model was constructed using long short-term memory 
(LSTM) and multi-layer perceptron (MLP) algorithms, 
which successfully detected and classified 73% of the image 
data, achieving recall, precision, and F scores of 88.2%, 
84.5%, and 85.0%, respectively. Additionally, [19] reported 
increased accuracy when training a cascaded learning system 
by combining a Chi-squared model with an adaptive boosting 
(AdaBoost) method, achieving classification accuracy of 
76.44%, sensitivity of 70.94%, and specificity of 81.94%. 
Lastly, the work in [20] analyzed spiral and wave drawing 
patterns using two differently structured CNN models on data 
from 55 patients tilting at cervical bend angles, resulting in 
an overall accuracy of 83.3%, with average recall, precision, 
and F values of 84%, 83.5%, and 83.94%, respectively. 

From this review, it is evident that using the CNN algorithm 
to discriminate between healthy and diseased patients from 
handwriting datasets is a viable method for predicting 
Parkinson’s disease, as it can identify subtle patterns. This 
current study, therefore, re-examines the CNN model on a 
similar dataset to investigate whether hyperparameter tuning 
can improve the accuracy of existing models. 

III. METHODOLOGY

A. Dataset

The information used in this research was obtained from the 
online resource Kaggle and is based on the publication 
“Distinguishing Different Stages of Parkinson’s Disease 
Using Composite Index of Speed and Pen Pressure of 
Sketching a Spiral” by Zham et al., published in Frontiers in 
Neurology in 2017 [21]. These image datasets were 
developed from the research in [21], where the composite 
index of speed (CISP) and pen pressure technique was 
employed to distinguish individuals with Parkinson’s disease 
from those without it. Hand-drawn sketches were utilized, 
with either healthy individuals or individuals with or 
suspected of having Parkinson’s disease sketching spiral and 
wavy drawings. Such drawings were included in the dataset. 
The images for this study consisted of 204 grayscale images, 
of which 60 were obtained from healthy subjects and 144 
from subjects with Parkinson’s disease. The images are 
classified into two groups: spiral and wavy sketches. 

1. Data Pre-Processing: The image dataset was first
separated into the spiral and wave image datasets. The images 
are grayscale images, meaning they consist of white and
black backgrounds and have different dimensions, making
them unsuitable for training the Convolutional Neural
Network (CNN) deep learning architecture. Therefore, it is
necessary to resize the images to ensure they have the same
dimensions. This study adopts a size of 256 x 256 pixels to
promote computational efficiency and accommodate the
characteristics of the grayscale image dataset.

The image dataset was reviewed and cleaned to confirm that 
there are no unwanted images and that the images included 
are strictly those necessary for this study. The images were 

further preprocessed using image filtering and segmentation 
techniques. This preprocessing step is essential for feature 
extraction. The extracted features will be used to categorize 
the dataset into healthy and Parkinson’s disease groups. 

2. Data Split: The dataset was separated into two major
folders: the spiral folder and the wavy folder. Fig. 1 shows
samples of the spiral and wavy images present in the dataset.

Fig. 1 Sample Image Dataset 

B. Image Filtering

This study utilized an edge filter to extract necessary features 
based on edge points, line thickness, intersections, and the 
number of pixels. These features are essential for 
characterizing grayscale images. The study will also employ 
the K-nearest neighbors (KNN) algorithm to segment the 
images based on notable features such as the number of pixels, 
number of edges, and line thickness present in the images. 
The KNN algorithm will leverage existing similarities in the 
proximity of edges and intersections, which are grouped into 
endpoints. The proximity of these endpoints will be used to 
differentiate between images drawn by healthy individuals 
and those drawn by individuals with Parkinson’s disease. 

C. Model Building

In building the model, this study employed the Convolutional 
Neural Network (CNN) deep learning algorithm. This 
algorithm was selected due to its effectiveness in object 
detection, making it a robust tool for image classification. Fig. 
2 shows the general flow of the proposed model. 

1. Model Design: During the course of the study, the
following design tools were included:

a. Wondershare EdrawMax: This diagramming software
enables users to create and design various types of visual
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diagrams. In this study, it was applied to visualize the 
proposed model as well as other related diagrams. 

b. Microsoft Snipping Tool: This tool was used to capture
images and text from reference sources and parts of the
computer screen. The captured items were then edited and
incorporated into this study. The diagrammatic
representation of the model was created using the EdrawMax

software to illustrate how the model operates. The model’s 
operation begins with the pre-processing of data features. The 
dataset will be split into an 80% training set and a 20% testing 
set according to machine learning standards, and the features 
will be properly normalized before being fed into the CNN 
model for training. The study will yield two different models 
for the spiral dataset and the wavy dataset; following 
successful model training, the models will be evaluated. 

Fig. 2 The CNN-based Parkinson Disease Detection Model [Researcher’s Model]   

2. Model Implementation: Among the tools used for the
implementation of this model are

a. TensorFlow 2.5 and Keras API: The designed model was
implemented using TensorFlow, an open-source framework
developed by Google, specifically designed for deep learning
and other artificial intelligence solutions. TensorFlow 2.5 is
well integrated with the Keras library, an application
programming interface (API) that simplifies the
implementation of deep learning algorithms. Keras serves as
a practical neural network API built on top of the TensorFlow
framework. TensorFlow was selected as the implementation
framework due to its superior functionality and features
compared to other leading deep learning frameworks, such as
PyTorch, Theano, and Keras, which are critical for the
development of advanced neural network models. Thus,
TensorFlow version 2.5 was utilized in this study to develop
and train the Deep Learning Ensemble Model.

b. Python Programming Language: The code for the model
was developed using Python 3.x (version 3.11.4). Python was 
chosen for its ease of use and the availability of effective deep 
learning (DL) and machine learning (ML) libraries and
frameworks.

c. PyCharm: The development environment used for writing
and debugging the Python code was the PyCharm Integrated
Development Environment (IDE). This IDE is highly
effective due to its integrated code completion and
suggestion features, significantly reducing development time.

d. Google Colaboratory: Commonly referred to as Colab,
this web service allows users to create and execute Python
programs within a browser window. It was effectively used
as an environment for executing the Python code.

D. Performance Evaluation Metrics

The performance of the proposed model is evaluated using 
key performance metrics, including but not limited to 
accuracy, precision, recall, and the F1 score, among other 
metrics that aim to assess the effectiveness and reliability of 
the model. 

1. Accuracy: This metric measures the percentage of the total
dataset that was correctly classified by the algorithm. It is
calculated using the following operation: the sum of true
negatives (TN) and true positives (TP) is divided by the sum
of TP, TN, false positives (FP), and false negatives (FN).
True positives and true negatives refer to correctly classified
instances, while false positives and false negatives represent
instances where the algorithm has made classification errors.
Accuracy is one of the most significant measures of a model’s
performance. The mathematical expression for accuracy is:

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 (1) 

2. Precision: This metric captures the true positive (TP) rate
in relation to the sum of true positives (TP) and false positives
(FP). A higher positive predictive value (PPV) indicates a
greater ability of the model to distinguish positive instances.
Precision and recall are generally inversely related, meaning
that as precision increases, recall may decrease, and when
precision is low, recall can be very high. The formula for
precision is:

 Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (2) 

Where TN is True Negative, TP is True Positive, and FP is 
False Positive. 

4AJCST Vol.13 No.2 July-December 2024

Uche-Jerry Nzenwata, Ayodeji G. Abiodun, Adelola Olayinka, Oluwabamise J. Adeniyi and Akwaronwu B. Gazie



3. Recall: More commonly referred to as sensitivity or true
positive rate, recall is the ratio of positive instances correctly
identified to all actual positives. It is calculated by dividing
TP by the sum of TP and FN. This metric describes how
many of the actual positive instances were correctly
identified by the model. The formula for recall is:

 Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (3) 

Where TP: True Positive and FN: False Negative. 

4. F1-Score: The F1 score is a summary metric that addresses
the limitations of using precision or recall in isolation. It
combines both metrics into a single score by calculating their
harmonic mean. This is particularly useful in situations where 
a balance between precision and recall is necessary, helping
to assess the overall performance of the model. The F1 score
is computed using the following equation:

 𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  2×𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

  (4) 

IV. RESULTS AND DISCUSSION

A. Data Pre-processing

The data pre-processing stage was conducted to ensure that 
the image datasets were properly prepared for effective 
machine learning algorithm training. The image datasets 
consisted of two types of images: 

1. Waveform images
2. Spiral form images

The image datasets were categorized based on whether the 
images were obtained from healthy patients or patients with 
Parkinson’s Disease. Fig. 3 shows the tabular representation 
of the first 15 images. 

Fig. 3 Tabular view of the Image dataset from the Directory

The grayscale images had varying dimensions, ranging from 
168 to 512 pixels. These images were resized to a standard 
dimension using the NumPy array() function. A size of 256 

by 256 pixels (256 × 256) was chosen. Fig. 4 shows a sample 
display of the dataset. 

Fig. 4 Resized Image dataset to 256 x 256
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The dataset was preprocessed further to generate data points, 
making it easier to differentiate the contours and 
irregularities in the images. Fig. 5 shows the data points for 
some of the images on the x and y axes. 

All the image plots were then converted into a data frame, 
where each row represents a single data point for each image 
pixel.  

Fig. 5 Image dataset data points 

1. Extracted Features

After pre-processing the image dataset, the following 
features were extracted and refined using the K-NN 
algorithm: 

a. Mean_thickness: In the context of images, “mean
thickness” refers to the average thickness of specific
characteristics or structures within the images. Image
analysis often involves measuring various aspects of
objects or patterns, with thickness being one such feature.

b. Std_thickness: “std_thickness” refers to the standard
deviation of thickness. The standard deviation measures
the variability or dispersion of thickness values from the
mean. In image analysis, it indicates how much
individual thickness measurements deviate from the
average thickness.

c. Number_pixels: The number of pixels refers to the total
number of visual elements, or pixels, in an image. Each
pixel represents the smallest unit of information in a
digital image, and this feature is often used to describe
the image’s resolution.

d. Number_edgepoints: This refers to the number of points
along the edges or borders of objects in an image. Edges
represent regions of significant intensity changes, which
are crucial for many computer vision and image
processing tasks. Edge detection and analysis help
identify and characterize shapes and structures within
the image.

e. Number_intersections: This refers to the number of
points in an image where lines or contours intersect.
These intersections can serve as important features in
computer vision and image processing applications.

These features were normalized and standardized using the 
StandardScaler() method. The two classes were encoded as 0 
and 1, where 0 denotes healthy patients and 1 denotes patients 
with Parkinson’s Disease. 

Figs. 6 and 7 were obtained during the training process of the 
spiral image dataset. The figures show the original image 
dimensions, the number of training images, the number of 
testing images, and the total number of images used. 

Fig. 6 Spiral image dataset feature training process 
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Fig. 7 Wave image dataset feature training process 

B. CNN Model Training

In designing the CNN model, we considered important 
parameters and hyper parameters required for effective 
model training. In addition to the identified features, deeper 
CNN features are automatically detected based on the 
number of layers required for training. Table 1 shows the 
CNN parameters used and their values. The step-by-step 
classification system within the convolutional neural network 
(CNN) architecture is described below. 

1. Model Architecture
a. The architecture of the CNN model is built using the

Sequential API provided by Keras.
b. The layers include Convolution layers (Conv2D), ReLU

layers, MaxPooling2D layers, Dropout layers, and Fully
Connected (Dense) layers.

c. The final layer utilizes the Sigmoid activation function
to perform binary classification, scaling between zero
and one.

2. Data Loading
a. Image data is loaded from the specified directory using

the Path class from the pathlib module. 
b. The training and testing datasets are organized into

DataFrames using Pandas, with paths and corresponding
labels.

3. Data Augmentation: The ImageDataGenerator from Keras
was used for data augmentation, including rotation, shifting,
brightness adjustment, horizontal and vertical flipping, and a
pre-processing function (contrast stretching).

4. Data Splitting: Data is split using the validation split
attribute, which divides the data into training and validation
sets.

5. Model Compilation: The model is compiled using the
binary cross-entropy loss function and the Adam

optimization algorithm. The model’s performance is 
evaluated using the accuracy metric. 

6. Model Training
a. The model is trained using the fit_generator function for

both training and validation set generators. During
training, steps per epoch and validation steps are
specified.

b. Callbacks such as TensorBoard, learning rate reduction,
early stopping, and model check pointing are employed
during training.

7. Hyperparameter Tuning
a. Hyperparameter tuning is performed using Grid Search

with logistic regression.
b. The parameter grid includes the learning rate “C” with

values of 0.00001, 0.0001, 0.001, and 1.0.

TABLE I MODEL PARAMETERS AND VALUES 
Parameters Type Value 

15 Layers 

Conv2D, 
activation, 
Maxpooling2D, 
Dense, Dropout, 
Flaten 

Activation Function Relu, sigmoid 
Pool_size (2,2) 
Strides (2,2) 

Dropout 0.25 
Epoch 100 
Validation_steps 400 

Batch_size 32 

C. Model Architecture Description

1. Layers: The model consists of a total of 15 layers,
including Conv2D, Activation, MaxPooling2D, Dropout,
Flatten, and Dense layers.

2. Conv2D Layers: The model employs five convolutional
layers with an increasing number of filters (32, 64, 64,
128, 128). These layers progressively extract more
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complex features from the input data as it passes through 
them. 

3. Activation Functions: The ReLU activation function is
used in various layers of the model; except for the final
output layer, all layers convert outputs using this
activation function.

4. Pooling Layers: MaxPooling2D layers are applied after
every two convolutional layers, down sampling the
feature maps by a factor of 2 in both dimensions. This
reduces the complexity of the data and helps control
overfitting.

5. Dropout Layers: Regularization through dropout layers
randomly removes a certain percentage of neurons to
prevent overfitting, allowing the model to learn more
abstract concepts.

6. Dense Layers: There are two dense layers in this
architecture: one consists of 128 neurons, and the other
consists of 1 neuron. The final output layer, with a single
neuron, uses a sigmoid activation function for binary
classification.

7. Flatten Layer: This layer converts the multi-dimensional
feature maps produced by the convolutional layers into a
one-dimensional structure, which is then fed to the dense 
layers for processing.

8. The CNN model utilized the parameters listed in Table I
to generate additional features from the image dataset.
The total number of parameters generated for the spiral
image model and wave image model are 4,480,993 and
8,675,297, respectively. All parameters are trainable. Fig.
8 shows the summary of the developed model.

Fig. 8 Model Summary 

D. Result Summary

For validation purposes, the spiral and wave image sets were 
used separately, with the model’s performance assessed 
using various metrics, including accuracy, precision, recall, 
and F1-score. These metrics were considered for classifying 
healthy spiral images and those of Parkinson’s Disease 

patients, as described in Tables II and III. A similar result was 
obtained for the wave image sets; however, there was a slight 
change in the accuracy readings between the two scenarios. 
The accuracy measures of the two CNN models are sufficient 
for predicting Parkinson’s disease from given sketch 
diagrams. These accuracies are dependent on the learning 
rates set during model training. 
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TABLE II SPIRAL CNN MODEL RESULT ON LEARNING RATES 
Learning Rate Patient Type Accuracy Precision Recall F1-Score 

0.00001 
Healthy Patient 

97.93 
74 93 82 

PD Patient 91 67 77 

0.0001 
Healthy Patient 

97.93 
82 93 87 

PD Patient 92 80 86 

0.001 
Healthy Patient 

97.93 
82 93 87 

PD Patient 92 80 86 

0.01 
Healthy Patient 

97.93 
81 87 84 

PD Patient 86 80 83 

1.0 
Healthy Patient 

97.93 
87 87 87 

PD Patient 87 87 87 

Fig. 9 Accuracy Vs Learning Rate of Spiral CNN Model 

Fig. 10 Precision Vs Learning Rate of Spiral CNN Model 
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Fig. 11 Recall Vs Learning Rate of Spiral CNN Model 

Fig. 12 F1-Score Vs Learning Rate of Spiral CNN Model 

TABLE III WAVE CNN MODEL RESULT ON A LEARNING RATE OF 0.00001 
Learning Rate Patient Type Accuracy Precision Recall F1-Score 

0.00001 
Healthy Patient 

97.93 
92 73 81 

PD Patient 78 93 85 

0.0001 
Healthy Patient 

97.93 
92 80 86 

PD Patient 82 93 87 

0.001 
Healthy Patient 

97.93 
92 80 86 

PD Patient 82 93 87 

1.0 
Healthy Patient 

97.93 
92 80 86 

PD Patient 82 93 87 
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Fig. 13 Accuracy Vs Learning Rate of Wave CNN Model 

Fig. 14 Precision vs Learning Rate of Wave CNN Model 

Fig. 15 Recall Vs Learning Rate of Wave CNN Model 
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Fig. 16 Accuracy vs Learning Rate of Wave CNN Model 

1. Overall Accuracy
a. Spiral CNN: The accuracy for both healthy and

Parkinson’s Disease patients remains almost constant
(around 97.93%) across all learning rates, except for
0.01, which shows a slight drop for Parkinson’s Disease
patients (86%).

b. Wave CNN: The accuracy for both healthy and
Parkinson’s Disease patients shows a wider range, with
the highest accuracy at 0.00001 (92% for healthy
patients and 78% for Parkinson’s Disease patients) and
the lowest at 1.0 (92% for healthy patients and 82% for
Parkinson’s Disease patients).

2. Precision and Recall
a. Spiral CNN: Both precision and recall remain relatively

stable for healthy patients across all learning rates.
However, for Parkinson’s Disease patients, there are
some fluctuations. At 0.001 and 0.01, both precision and
recall drop slightly compared to other learning rates.

b. Wave CNN: Similar to accuracy, precision and recall for
both healthy and Parkinson’s Disease patients vary more
broadly across learning rates. Generally, higher learning
rates lead to higher precision for healthy patients but
lower precision for Parkinson’s Disease patients. Recall
tends to be more stable for healthy patients but shows
some variation for Parkinson’s Disease patients.

3. F1-Score
a. Spiral CNN: Similar to precision and recall, the F1-score

remains stable for healthy patients but shows some
variation for Parkinson’s Disease patients, with the
highest score at 0.0001 (87) and the lowest at 0.01 (84).

b. Wave CNN: The trend for the F1-score mirrors that of
precision and recall, with higher learning rates leading to
a higher F1-score for healthy patients but a lower F1-
score for Parkinson’s Disease patients.

4. Comparison between Spiral CNN and Wave CNN
Overall, the Spiral CNN appears to be more robust to changes 
in learning rate, maintaining consistent performance across
all values. The Wave CNN seems to be more sensitive to the
learning rate, with both higher and lower performance
depending on the chosen value. In terms of accuracy, both
datasets perform well; however, the Spiral CNN achieves
slightly higher accuracy for healthy patients, while the Wave
CNN achieves slightly higher accuracy for Parkinson’s
Disease patients at the lowest learning rate.

V. CONCLUSION

This study implements a CNN model for grade classification 
of the Parkinson’s disease database and focuses on the effect 
of changing the learning rate on the model’s performance. 
However, research has shown that CNNs can predict the 
incidence of the disease; further investigation is required to 
understand how variations in the learning rate affect the 
effectiveness and stability of the model. The study utilized a 
dataset containing hand-drawn sketches from both 
Parkinson’s disease patients and healthy individuals, 
employing KNN for feature extraction and convolutional 
layers for feature generation. The CNN design incorporated 
dense layers for classification. During training, different 
learning rates were carefully examined, and pre-processing 
techniques such as normalization and augmentation were 
applied to enhance model generalization. The study found 
that higher learning rates initially accelerated convergence 
but degraded accuracy, while lower rates exhibited more 
consistent convergence but required longer training epochs. 
The optimal learning rate significantly impacts model 
convergence and accuracy, providing valuable insights for 
future model development. The findings have practical 
implications for improving the predictability of Parkinson’s 
disease models. Understanding the influence of learning rates 
aids in designing more robust and efficient diagnostic tools, 
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potentially facilitating early intervention and personalized 
treatment regimens. One limitation is the reliance on a single 
dataset, which may contain biases. Furthermore, the study 
focused on a specific CNN architecture; alternative hyper 
parameters warrant further investigation in future research. 
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