
Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P); 2583-7907 (E)
Vol.13 No.2, 2024, pp.48-55

 © Centre for Research and Innovation
 www.crijournals.org

 DOI: https://doi.org/10.70112/ajcst-2024.13.2.4288

Enhancing DNS Performance with Efficient Cryptographic Algorithms:
A Comparative Study of DoT Frameworks

Ohwo Onome Blaise1*, Ajayi Wumi2 and Udosen Alfred3
1&2Department of Computer Science, 3Department of Software Engineering,

Babcock University, Ogun State, Nigeria
E-mail: ajayiw@babcock.edu.ng, udosena@babcock.edu.ng

*Corresponding Author: ohwoo@babcock.edu.ng
(Received 19 September 2024; Revised 14 October 2024, Accepted 8 November 2024; Available online 12 November 2024)

Abstract - The Domain Name System (DNS) is a critical
component of the Internet, and its disruption can significantly
affect service quality. To enhance security and protect user
privacy, encrypted protocols, such as DNS over TLS (DoT),
DNS over Quick UDP Internet Connections (DoQ), and DNS
over HTTPS (DoH), have been introduced. This study evaluates
the performance impact of different cryptographic algorithms
within the DoT framework, focusing on how encryption
influences DNS query performance and resolver efficiency.
Performance evaluations were conducted using various
cryptographic algorithms under different client load conditions.
Metrics such as response rate, timeout rate, and resource
utilization were analyzed to assess the impact of encryption on
DNS recursive resolvers. The analysis revealed that the choice
of encryption algorithm and client load significantly affect
performance. Advanced Encryption Standard-Galois/Counter
Mode (AES-GCM) 128 and ChaCha20-Poly1305 demonstrated
superior performance, exhibiting higher response rates and
lower timeout rates compared to AES-GCM 256. Organizations
managing DNS infrastructure should monitor client loads and
consider adopting efficient encryption algorithms, such as AES-
GCM 128 or ChaCha20-Poly1305. These choices can optimize
DNS recursive resolver performance while maintaining robust
security in dynamic network environments.
Keywords: Domain Name System (DNS), Encrypted Protocols,
DNS over TLS (DoT), Cryptographic Algorithms, Performance
Evaluation

I. INTRODUCTION

The Domain Name System (DNS) plays an essential role in
the functioning of the Internet and is crucial for its
dependable and trustworthy operation. Consequently, any
disruption in its functioning can significantly impact both the
quality of service offered and the global Internet. Over time,
numerous attempts have been made to compromise DNS
security to launch various attacks against it [1].

The DNS recursive resolver lacks a critical security
framework for ensuring data confidentiality, accessibility,
and integrity [2]. To address these issues, new protocols, such
as DNS over Transport Layer Security (DoT), DNS over
Quick UDP Internet Connections (DoQ), and DNS over
Hypertext Transfer Protocol Secure (DoH), have been
developed [3]. DNS encryption is achieved by encrypting the
content of requests and responses (between clients and
recursive resolvers) using existing cryptographic methods in

an upper-layer protocol. Encrypting DNS queries and
responses between clients and resolvers enhances user
privacy and helps defend against attacks.

As a result, several researchers [4]-[7] have investigated the
impact of DNS encrypted transports on the end-user
experience. These studies have shown that encrypted
transports often lead to slower DNS queries due to
connection and transport overhead, particularly in networks
with suboptimal performance. To improve DNS query
response times, it is crucial to understand the relative
performance costs and benefits of the cryptographic
algorithms used in DNS transport protocols.

Existing research has demonstrated that cryptography
impacts performance when using Transport Layer Security
(TLS). TLS employs both symmetric and asymmetric
cryptographic primitives; however, asymmetric encryption
consumes more memory. Symmetric cryptography includes
ChaCha20-Poly1305, which is effective in software
implementation, and Advanced Encryption Standard (AES),
which is typically fast and efficient in hardware
implementation. More importantly, the cryptographic
operations of TLS can impose high CPU costs when
processing DNS queries. This study aims to evaluate the
performance of various cryptographic algorithms within the
DoT framework under increasing client loads. Three
cryptographic algorithms - AES-GCM 256, AES-GCM 128,
and ChaCha20-Poly1305 - are investigated in this paper.
Offline evaluations and performance analyses reveal insights
into the efficiency and effectiveness of these algorithms in
maintaining stability and accommodating increasing client
demands.

A. Significance of the Study

This study is of significant importance as it aims to assess
various cryptographic algorithms within the DNS over TLS
(DoT) framework, focusing on managing an increasing
influx of clients. This evaluation contributes to critical
aspects of DNS security, thereby enhancing overall Internet
functionality. The study examines the performance of
algorithms such as AES-GCM 256, AES-GCM 128, and
ChaCha20-Poly1305, providing insights into their
effectiveness in securing DNS communications.

48AJCST Vol.13 No.2 July-December 2024

__
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

User privacy is a paramount concern in the digital landscape,
and this study addresses it by analyzing the impact of
cryptographic algorithms on encrypting DNS requests and
responses. The findings highlight trade-offs between
encryption strength, computational overhead, and DNS query
response times, aiding in the identification of optimal
algorithms that balance performance and privacy.
Additionally, the study explores the CPU costs associated
with cryptographic operations in DNS query processing. By
evaluating different algorithms, it offers insights into their
relative performance costs and benefits, thereby guiding the
optimization of DNS performance.

This information is crucial for minimizing computational
overhead while ensuring secure and reliable DNS operations.
Furthermore, the study’s findings provide valuable
information for researchers, developers, and system
administrators involved in DNS implementation decisions. It
equips them with insights to make informed choices
regarding the selection and configuration of cryptographic
algorithms, ensuring stability, scalability, and effective
management of growing client demands in DNS over TLS
implementations.

II. MATERIALS AND METHODS

A. Review of Literature

DNS over TLS (DoT) aims to prevent on-path attackers from
monitoring and altering victims’ DNS queries and responses,
although it remains unclear how much information can be
extracted from DoT interactions through traffic analysis. One
method proposed in [8] uses DoT fingerprinting to examine
traffic and determine whether users have visited websites of
potential interest to adversaries. With a false negative rate of
less than 17% and a false positive rate of less than 0.5% when
DNS packets are not padded, this method effectively
identifies DoT activity for specific websites. Additionally,
information leakage was shown to be possible even with
padded DoT messages.

Over the first five months of 2021, this study monitored the
adoption of DoH, DoT, and DoQ across three distinct global
enterprises. The analysis, as detailed in [3], examined
aggregate figures, requests per user, and traffic patterns to
identify adoption trends. While the average Internet traffic
associated with DoH, DoT, and DoQ increased in 2020, no
statistically significant changes were observed during the
first five months of 2021.

However, the study revealed a notable fourfold increase in
accessible DoH servers. These findings suggest that
connections to unfamiliar DoH servers may soon rise,
potentially serving both beneficial and malicious purposes,
despite the current absence of a marked uptick in encrypted
DNS usage. Although DoT was introduced as a DNS
protocol improvement in 2016, no comprehensive
performance analysis has been conducted. A recent study by
[4] evaluated the performance of DoT at the network edge,

including its adoption rate, reliability, and response times
compared to conventional DNS over UDP/53 (Do53), using
3.2k RIPE Atlas probes deployed in home networks. The
survey found that local resolvers remain the primary
proponents of DoT, while open resolvers are increasingly
supporting it. However, DoT’s reliability decreased as failure
rates rose, and response times significantly increased. The
majority of failures were attributed to timeouts caused by
intermediate middleboxes along the network path that discard
packets intended for port 853, the designated port for DoT.

The influence of Do53, DoT, and DoH on query response
times and page load times across five distinct global
orientations was assessed in [5]. The results showed that
while DoH and DoT can surpass Do53 in page load speed,
they frequently exhibit slower response times than Do53.
During network degradation, significant packet loss and
latency reduce the performance of all protocols.

T. Boettger et al., [6] examined the DoH environment,
focusing on its additional security overhead and its
advantages over DoT by comparing it with other secure DNS
protocols. The study also explored the effects of head-of-line
blocking on DoT and DoH/1 performance, which partly
explains why DoH/2 gained popularity more quickly than
DoT.

According to B. Jonglez [7], DNS-over-TCP performance is
comparable to Do53 when there are fewer clients, with only
a 30% latency increase. However, as the number of clients
grows, DNS-over-TCP performance deteriorates, stabilizing
at a 75% latency increase. The performance profile of DNS-
over-TCP is comparable to that of standard TCP, despite a
30-45% speed drop. As client numbers rise, both TCP and
TLS suffer significant performance degradation, likely due to
the kernel handling multiple concurrent TCP connections.

The existing UDP-based resolution method can take up to 5
seconds to detect a packet loss event, leading to significant
delays caused by retransmission timeouts. B. Jonglez et al.,
[9] investigated TCP- or TLS-based persistent DNS
connections as a potential solution to this issue. Persistent
connections were shown to significantly reduce worst-case
latency. Large-scale platform experiments revealed that
recursive DNS services can be effectively delivered over
TCP and TLS with acceptable performance impacts when
compared to UDP, provided standard software and
sufficiently powerful hardware are used. However, switching
to TCP or TLS increases the recursive resolver’s load,
particularly with a high number of concurrent connections.

DNS is a critical component of Internet infrastructure,
making its security essential. Existing DNS security
architectures, such as DoH, DoT, and DoQ, provide security
services but face performance limitations and fail to fully
protect DNS data against evolving cyber threats. The
research in [10] evaluates the current state of DNS security
and its inadequacies, proposing an Adaptive Security
Architecture inspired by the immune response system. This

49 AJCST Vol.13 No.2 July-December 2024

Enhancing DNS Performance with Efficient Cryptographic Algorithms: A Comparative Study of DoT Frameworks

approach addresses known threats and anticipates new ones
through biodiversity-like defense mechanisms.

O. B. Ohwo et al., [11] introduced an Adaptive Transport
Layer Security Model (ad-TLSM) to address performance
challenges in DoT, which encrypts communication between
clients and recursive resolvers. The ad-TLSM incorporates
real-time monitoring during the TLS handshake to track
metrics such as throughput, CPU load, and cryptographic
algorithm performance. This model adapts security
dynamically based on client-server conditions. Performance
evaluations showed that while AES-GCM 256 caused high
CPU load, switching to ChaCha20 improved request
handling by 15-25%. This adaptive approach reduces CPU
strain and enhances overall performance, outperforming
existing models in latency and quality of service.

M. S. Islam et al., [12] explored various phishing attack types,
including email spoofing, spear phishing, phone phishing,
clone phishing, pharming, HTTP phishing, man-in-the-

middle attacks, and fast-flux phishing. To combat these, the
study developed a filtered website tool that identifies
fraudulent links by analyzing website IPs, registration dates,
and DNS records. Although the tool requires further
refinement, it represents a significant step toward improving
digital security.

Finally, P. Banu et al., [13] addresses power consumption in
wireless mobile devices, focusing on optimizing energy use
through software-level cryptographic protocols. By
measuring the energy consumption of these protocols, the
research demonstrated that the proposed cryptographic
protocol offers enhanced security while consuming
significantly less energy compared to existing protocols. The
findings suggest that the proposed scheme is simpler, more
secure, and more efficient, making it a promising solution for
battery-efficient mobile systems.

B. Methodology

Fig. 1 Research Design (adopted from [8])

Fig. 1 illustrates a typical DoT session that occurs during the
request-response cycle of a DNS server. To ensure the
security of both requests and responses, TLS is employed at

the TCP transport layer to encrypt the communication
channel between the user and the DNS recursive resolver.

Fig. 2 A Typical TLS 1.3 Handshake (Adopted from [14])

50AJCST Vol.13 No.2 July-December 2024

Ohwo Onome Blaise, Ajayi Wumi and Udosen Alfred

The TLS 1.3 handshake procedure is illustrated in Fig. 2. To
perform lookups, the client first connects via TCP to port
TCP/853 of the DoT-enabled resolver. A TLS connection is
then established to exchange cryptographic keys through the
conventional TLS handshake process. The “key_share” and
“pre_key_share” parameters in TLS 1.3 are used to encrypt
the “ClientHello” handshake message. The “key_share”
parameter facilitates the exchange of the endpoint’s public
key share, enabling the generation of a secret key at the
remote endpoint. Conversely, the “pre_key_share” parameter
indicates the index of the encryption shared key currently in
use from the list of negotiated shared keys.

Subsequently, the server’s security certificate is encrypted
using TLS 1.3. Once the TLS session is successfully
established, the client can perform TLS-encrypted DNS
lookups through the DoT port TCP/853 on the resolver side.
The TLS connections can remain open for subsequent DNS
lookups, depending on client and server configurations,
thereby reducing latency and avoiding additional TCP/TLS
handshakes.

Transport Layer Security (TLS) version 1.3 offers a limited
selection of cryptographic algorithms. By default, three
cryptographic algorithms are available for establishing a
secure connection: AES-GCM 128-bit, ChaCha20-Poly1305
256-bit, and AES-GCM 256-bit.

C. Performance Evaluation Parameters

The Evaluation Process:
1. Security Algorithm Performance: The throughput of

common cryptographic algorithm implementations is
evaluated using the same data size to analyze the security
levels and performance overhead.

2. Use-case Scenario: The performance of the DNS
recursive resolver is assessed using various
cryptographic techniques and client-server
configurations.

Client Activity for the Evaluation:
3. Phase 1: One session is initiated every 256 seconds

using an HTTPerf script, resulting in a total of 10
sessions. Each session consists of 64 calls, separated by
4 seconds.

4. Phase 2: Over the first 500 seconds, 10 clients arrive
every 3 seconds, resulting in an average request rate of
200 requests per second.

5. Phase 3: During the subsequent 250 seconds, client
arrivals increase to 10 clients every 2.5 seconds, yielding
an average request rate of 245 requests per second.

6. Phase 4: For the final 500 seconds, the request rate
decreases to 200 requests per second.

III. RESULTS OF THE STUDY

The experiment was conducted on a Windows 10 computer
running Apache 2.4, equipped with an Intel(R) Core(TM) i5-

5300U CPU operating at 2.30 GHz and 16 GB of RAM. The
Apache web server, renowned for its modular architecture,
was employed to implement the DNS recursive resolver.
Apache’s functionality is extended by modules, enabling the
customization of client requests throughout the request-
response cycle. The TLS module was integrated into Apache
using OpenSSL 1.1. To ensure TLS session security, the
SSLCipherSuite directive was utilized to specify a subset of
security protocols for establishing secure sessions with
clients.

A. Security Algorithm Performance Evaluation

A comprehensive assessment of cryptographic algorithm
performance within the DNS over TLS (DoT) framework
was conducted through offline evaluations. The objective of
this evaluation was to demonstrate and analyze the efficacy
and efficiency of the various cryptographic algorithms
utilized in the DoT framework.

TABLE I AVERAGE NUMBER OF BYTES PER SECONDS

Cryptographic Algorithms Throughput (kB/s)
ChaCha20-Poly1305 112000
AES-GCM 128 36000

AES-GCM 256 26500

Table I illustrates the performance impact of the default TLS
cryptographic algorithms when handling 532-byte file
requests. The findings corroborate the assertion made in [7]
that AES exhibits remarkable speed and efficiency,
particularly when implemented in hardware. Additionally,
they highlight the efficiency of ChaCha20 in software
implementations.

Ten new clients are added every 2.5 seconds to initiate the
client arrival rate, resulting in 240 requests per second. This
cycle continues until the server reaches its overload level.
The client load pattern then follows, with a 0.1-second delay
between each subsequent wave of ten client arrivals. Notably,
90% confidence intervals ensure that response times remain
below 2 milliseconds for all responses under 250
milliseconds and below 10 milliseconds for responses
beyond this threshold.

The effect of client load on DNS recursive resolver
performance is shown in Fig. 3, which demonstrates that
AES-GCM 256 can efficiently process about 318 requests
per second before overloading. The resolver is capable of
handling an additional 15% to 25% of requests per second by
using a different algorithm. Despite the final overload, AES-
GCM 128 and ChaCha20 both outperformed AES-GCM 256
by about 15% and 25%, respectively, with response rates of
333 req/s and 343 req/s when compared under the same file
size and client concurrency conditions.

51 AJCST Vol.13 No.2 July-December 2024

Enhancing DNS Performance with Efficient Cryptographic Algorithms: A Comparative Study of DoT Frameworks

Fig. 3 Security Algorithm Performance

It is interesting to note that, even though cryptographic
resources are prioritized, the DNS recursive resolver must
allocate significantly more resources to other activities with
each request. Nevertheless, it is clear that the selection of
encryption technique is crucial, as it directly impacts the
throughput of the DNS recursive resolver. A 15% to 25%
increase in the number of supported clients could result from
choosing a different security level.

B. Use-Case Scenario

In this use-case scenario, a DNS recursive resolver
encounters an increasing number of clients. Three
cryptographic methods for TLS are provided by the resolver:

AES-GCM 128, AES-GCM 256, and ChaCha20-Poly1305.
First, using each of the previously proposed cryptographic
algorithms for security, we investigate how the DNS
recursive resolver is affected by the increasing client demand.
The average throughput recorded at 10-second intervals is
represented by the throughput values shown in the figures.
To determine the average number of timed-out requests, the
assessment was repeated several times.

In the initial scenario, the utilization of AES-GCM 128 is
considered appropriate for safeguarding the existing data.
Clients expect a specific Quality of Service, as they prefer not
to experience prolonged waits for the DNS recursive resolver
response.

Fig. 4 DNS Resolver Throughput using AES-GCM 128

52AJCST Vol.13 No.2 July-December 2024

Ohwo Onome Blaise, Ajayi Wumi and Udosen Alfred

Fig. 4 provides a comprehensive overview of DNS recursive
resolver throughput amidst varying client activities,
specifically when employing AES-GCM 128 encryption. The
illustration vividly portrays the resolver’s ability to
efficiently handle the influx of 10 clients at 3-second
intervals for the initial 500 seconds, without any requests
experiencing timeouts. This resilience persists even after
repeated experimentation.

During the experiment, clients initiate departure from the
system after 256 seconds upon successfully completing 64
requests each. Remarkably, the DNS recursive resolver
maintains stability, achieving a throughput of 250 req/s. The
subsequent phases of evaluation, depicted in Fig. 4, further

demonstrate the resolver’s adeptness at accommodating
increasing client entries. The second phase registers a
throughput of 340 req/s over 250 seconds, while the third
phase maintains a throughput of 250 req/s for 500 seconds,
aligning with anticipated behavior.

The comparison of DNS recursive resolver throughputs for
AES-GCM 128 and ChaCha20-Poly1305 is noteworthy.
Even with an increasing CPU load, the former shows
equivalent performance. ChaCha20-Poly1305 has
exceptional tolerance to a request rate of 343 requests per
second within the 6-second client Quality of Service (QoS)
restriction, as shown in Fig. 3, with no timeouts observed.

Fig. 5 DNS Resolver Throughput using AES-GCM 256

When AES-GCM 256 encryption is used, the DNS recursive
resolver throughput is visually represented in Fig. 5, showing
the impact of client activity. A percentage of timed-out
requests within specific intervals is depicted in the bar graph.
It highlights a significant finding by illustrating a situation in
which the DNS recursive resolver struggles with growing
client demand.

At the 500-second mark, an evident inflection point occurs as
client demands surge beyond the capacity manageable by the
DNS recursive resolver. This surge triggers the initiation of
request timeouts. Notably, clients adhere to a sequential
request pattern, dispatching the subsequent request only after
awaiting the resolution of the preceding one. The extended
response times contribute to a reduction in the number of
queries per second, consequently diminishing the overall
DNS recursive resolver throughput.

As the rate of client entries escalates, a corresponding
increase in simultaneous sessions unfolds. This growth in
simultaneous sessions contributes to an overall rise in the
total request rate, culminating in the majority of requests
experiencing timeouts. Even after the cessation of new client

requests at the 1250-second mark and the completion of
ongoing client sessions, a significant number of requests
remain in a timed-out state.

Unaware of the timeouts, the server continues processing and
holding back in an effort to fulfill pending client requests,
which complicates the situation further. As a result,
subsequent requests are not sent until the server has finished
processing the current load, potentially leading to more
timeouts. This use-case scenario illustrates how an increase
in client arrivals might result in server overload and
demonstrates how DNS recursive resolver performance
deteriorates when AES-GCM 256 is used.

IV. DISCUSSION

The objective of this study was to evaluate the performance
of different cryptographic algorithms within the DoT
framework in managing a growing influx of clients. The
study examined three cryptographic algorithms: AES-GCM
256, AES-GCM 128, and ChaCha20-Poly1305. Through
offline evaluations and analysis of performance metrics, the
findings shed light on the efficiency and effectiveness of

53 AJCST Vol.13 No.2 July-December 2024

Enhancing DNS Performance with Efficient Cryptographic Algorithms: A Comparative Study of DoT Frameworks

these algorithms in maintaining stability and accommodating
increasing client entries. It is clear from the results that the
DNS recursive resolver’s timeout rate and performance
deterioration are significantly influenced by both client load
and the encryption algorithm selection.

Firstly, the resolver’s capacity to manage requests effectively
is primarily determined by the client load. A greater number
of timed-out requests arises as the resolver’s performance
declines with an increasing client load. This is particularly
evident in scenarios where the client load surpasses the
capacity manageable by the resolver, leading to a surge in
request timeouts. The sequential request pattern followed by
clients, who wait for the resolution of the preceding request
before dispatching the subsequent one, further contributes to
extended response times and reduced query rates.

Secondly, the choice of encryption algorithm also influences
the performance degradation and timeout rate of the DNS
recursive resolver. According to the results, AES-GCM 256
is less tolerant of client load than AES-GCM 128 and
ChaCha20-Poly1305. However, the resolver shows the
ability to handle more requests per second by using a
different algorithm, such as AES-GCM 128 or ChaCha20-
Poly1305. This implies that the resolver’s throughput and
capacity to effectively manage client load are directly
impacted by the encryption algorithm used.

Additionally, the results demonstrate how effective AES-
GCM 128 and ChaCha20-Poly1305 are compared to AES-
GCM 256. Both AES-GCM 128 and ChaCha20-Poly1305
achieved greater response rates and outperformed AES-GCM
256 by roughly 15% and 25%, respectively, under similar file
size and client concurrency conditions. This emphasizes the
importance of selecting an appropriate encryption algorithm
based on specific requirements and expected client load.

In conclusion, the findings discussed show that the DNS
recursive resolver’s performance degradation and timeout
rate are greatly influenced by both client load and the
encryption scheme selection.

V. CONCLUSION

In conclusion, this study delved into the assessment of
cryptographic algorithms within the DoT framework,
focusing on the management of an increasing influx of clients.
The three cryptographic algorithms scrutinized - AES-GCM
256, AES-GCM 128, and ChaCha20-Poly1305 - were
subjected to comprehensive offline evaluations and
performance metric analyses, shedding light on their efficacy
in maintaining stability and handling escalating client entries.
The identified factors influencing the DNS recursive
resolver’s performance degradation and timeout rate were
found to be twofold: client load and the choice of encryption
algorithm. Firstly, the critical role of client load emerged,
showcasing its direct correlation with the resolver’s
efficiency in managing requests. As the client load soared,
the resolver’s performance declined, resulting in a notable

increase in timed-out requests. This trend became
particularly pronounced when the client load exceeded the
resolver’s manageable capacity, leading to a surge in request
timeouts. The sequential request pattern employed by clients,
waiting for the resolution of the preceding request before
initiating the next, further contributed to prolonged response
times and diminished query rates.

Secondly, the choice of encryption algorithm surfaced as a
pivotal factor influencing the performance dynamics of the
DNS recursive resolver. Notably, AES-GCM 256 exhibited
a lower tolerance for client load compared to its counterparts,
AES-GCM 128 and ChaCha20-Poly1305. However, the
study demonstrated that opting for an alternative algorithm,
such as AES-GCM 128 or ChaCha20-Poly1305, enabled the
resolver to manage additional requests per second. This
underscored the direct impact of the encryption algorithm
choice on the resolver’s throughput and its ability to
efficiently handle varying client loads.

Furthermore, the comparative analysis highlighted the
superior efficiency of AES-GCM 128 and ChaCha20-
Poly1305 relative to AES-GCM 256. Under equivalent
conditions of file size and client concurrency, both AES-
GCM 128 and ChaCha20-Poly1305 outperformed AES-
GCM 256 by approximately 15% and 25%, respectively,
achieving higher response rates. This underscores the critical
importance of selecting an encryption algorithm aligned with
specific requirements and anticipated client loads. In light of
these findings, several recommendations can be put forth.
Firstly, organizations and service providers should
proactively monitor and manage client loads to prevent
overload scenarios that can compromise resolver
performance. Additionally, the choice of encryption
algorithm should be a thoughtful consideration, with a
preference for algorithms like AES-GCM 128 or ChaCha20-
Poly1305, which demonstrated superior performance under
varied conditions. Continuous monitoring, periodic
evaluations, and potential adjustments in encryption
algorithms can collectively contribute to the sustained
optimal performance of DNS recursive resolvers in dynamic
and evolving network environments.

REFERENCES

[1] B. Gupta, Computer and Cyber Security: Principles, Algorithm,
Applications, and Perspectives. CRC Press, Taylor & Francis, 2018.

[2] K. Israry and F. William, “A demonstration of practical DNS attacks
and their mitigation using DNSSEC,” Int. J. Wireless Networks and
Broadband Technol., vol. 9, no. 1, pp. 58-78, 2020.

[3] S. García, K. Hynek, D. Vekshin, T. Čejka, and A. Wasicek, “Large
scale measurement on the adoption of encrypted DNS,” ACM,
pp. 1-16, 2021.

[4] T. V. Doan, I. Tsareva, and V. Bajpai, “Measuring DNS over TLS from
the edge: Adoption, reliability, and response times,” Int. Conf. Passive
and Active Network Measurement, 2021.

[5] A. Hounsel, K. Borgolte, P. Schmitt, and N. F. Jordan Holland,
“Comparing the effects of DNS, DoT, and DoH on web performance,”
in Proc. The Web Conf., 2020.

[6] T. Boettger, F. Cuadrado, G. Antichi, E. L. Fernandes, I. C. G. Tyson,
and S. Uhlig, “An empirical study of the cost of DNS-over-HTTPS,”
in IMC ‘19: ACM Internet Measurement Conf., 2019.

54AJCST Vol.13 No.2 July-December 2024

Ohwo Onome Blaise, Ajayi Wumi and Udosen Alfred

[7] A. Jonglez, “End-to-end mechanisms to improve latency in
communication networks,” Networking Internet Architecture,
pp. 1-137, 2021.

[8] R. Houser, Z. Li, C. Cotton, and H. Wang, “An investigation on
information leakage of DNS over TLS,” in The 15th Int. Conf. on
Emerging Networking EXperiments and Technologies (CoNEXT ‘19),
Orlando, FL, USA, 2019.

[9] A. Jonglez, S. Birbalta, and M. Heusse, “Poster: Persistent DNS
connections for improved performance,” in Networking 2019 - IFIP
Networking 2019, pp. 1-2, 2019.

[10] O. Alao, F. Y. Ayankoya, O. F. Ajayi, and O. B. Ohwo, “The need to
improve DNS security architecture: An adaptive security approach,”
Inf. Dyn. Appl., vol. 2, no. 1, pp. 19-30, 2023.

[11] O. B. Ohwo, F. Y. Ayankoya, O. F. Ajayi, and D. O. Alao, “Advancing
DNS performance through an adaptive transport layer security model

(ad-TLSM),” Ingénierie des Systèmes d’Information, vol. 28, no. 3,
pp. 777-790, 2023.

[12] M. S. Islam, M. Sajjad, M. M. Hasan, and M. S. I. Mazumder,
“Phishing attack detecting system using DNS and IP filtering,” Asian
Journal of Computer Science and Technology, vol. 12, no. 1,
pp. 16-20, 2023.

[13] P. Banu and K. Kumar, “An experimental study on energy
consumption of cryptographic algorithms for mobile hand-held
devices,” Asian Journal of Computer Science and Technology, vol. 1,
no. 1, pp. 91-97, 2012.

[14] V. S. Khandkar, M. K. Hanawal, and S. G. Kulkarni, “Challenges in
adapting ECH in TLS for privacy enhancement over the internet,”
pp. 1-9, 2022.

55 AJCST Vol.13 No.2 July-December 2024

Enhancing DNS Performance with Efficient Cryptographic Algorithms: A Comparative Study of DoT Frameworks

