Environmental and Genetic Interaction Models for Predicting Lung Cancer Risk Using Machine Learning: A Systematic Review and Meta-Analysis

Authors

  • Ernest O. Onuiri Department of Computer Science, School of Computing, Babcock University, Nigeria
  • Bright G. Akwaronwu Department of Computer Science, School of Computing, Babcock University, Nigeria
  • Kelechi C. Umeaka Department of Computer Science, School of Computing, Babcock University, Nigeria

DOI:

https://doi.org/10.70112/ajcst-2024.13.1.4266

Keywords:

Lung Cancer Risk, Machine Learning, Genetic and Environmental Factors, Rotation Forest Model, Precision Oncology

Abstract

This systematic review and meta-analysis examined environmental and genetic interaction models for predicting lung cancer risk using machine learning techniques. The findings underscore the importance of considering both genetic and environmental factors to enhance predictive accuracy, with significant clinical implications. Among the models reviewed, the Rotation Forest model demonstrated superior performance, achieving an AUC of 0.993, reflecting excellent predictive capabilities. The mean AUC across all models was approximately 0.789, indicating moderate to good discrimination. These results hold promising implications for personalized medicine and clinical decision-making, potentially improving patient outcomes and reducing the global burden of lung cancer. The meta-analysis further highlighted strong performance, with an average TRI-performance (accuracy, precision, recall) of 88.1%, demonstrating robust predictive abilities. Integrating machine learning with multidimensional data deepens the understanding of the biological mechanisms underlying lung cancer and supports its application in precision oncology, paving the way for individualized interventions and improved clinical management.

References

S. B. Manuck and J. M. McCaffery, “Gene-Environment Interaction,”Annu. Rev. Psychol., vol. 65, no. 1, pp. 41-70, Jan. 2014, doi: 10.1146/annurev-psych-010213-115100.

G. E. McClearn, “Nature and nurture: Interaction and coaction,” Am.J.Med. Genet. Part B Neuropsychiatr. Genet., vol. 124B, no. 1, pp. 124-130, Jan. 2004, doi: 10.1002/ajmg.b.20044.

C.-H. Yang, Y.-D. Lin, C.-Y. Yen, L.-Y. Chuang, and H.-W. Chang,“A Systematic Gene-Gene and Gene-Environment Interaction Analysis of DNA Repair Genes XRCC1, XRCC2, XRCC3, XRCC4,and Oral Cancer Risk,” Omi. A J. Integr. Biol., vol. 19, no. 4, pp. 238-247, Apr. 2015, doi: 10.1089/omi.2014.0121.

G. Vogt, “Environmental Adaptation of Genetically UniformOrganisms with the Help of Epigenetic Mechanisms—An InsightfulPerspective on Ecoepigenetics,” Epigenomes, vol. 7, no. 1, Mar. 2023, doi: 10.3390/epigenomes7010001.

L. M. Hernandez, D. G. Blazer, and A. S. Institute of Medicine (U.S.), Genes, Behavior, and the Social Environment: Moving Beyond theNature/Nurture Debate. National Academies Press, 2006.

G. Sirugo, S. M. Williams, and S. A. Tishkoff, “The Missing Diversity in Human Genetic Studies,” Cell, vol. 177, no. 1, pp. 26-31, Mar. 2019, doi: 10.1016/j.cell.2019.02.048.

S. Kukreja, M. Sabharwal, M. A. Shah, and D. S. Gill, “A HeuristicMachine Learning-Based Optimization Technique to Predict Lung Cancer Patient Survival,” Comput. Intell. Neurosci., vol. 2023,p. 4506488, 2023, doi: 10.1155/2023/4506488.

N. M. Carleton, G. Lee, A. Madabhushi, and R. W. Veltri, “Advancesin the Computational and Molecular Understanding of the Prostate Cancer Cell Nucleus,” J. Cell. Biochem., vol. 119, no. 9, pp. 7127-7142, Sep. 2018, doi: 10.1002/jcb.27156.

L. Pan et al., “Artificial Intelligence Empowered Digital HealthTechnologies in Cancer Survivorship Care: A Scoping Review,” Asia-Pacific J. Oncol. Nurs., vol. 9, no. 12, p. 100127, Dec. 2022,doi: 10.1016/j.apjon.2022.100127.

A. Choudhary, A. Anand, A. Singh, and P. R., “Machine Learning-Based Ensemble Approach in Prediction of Lung Cancer Predisposition Using XRCC1 Gene Polymorphism,” J. of, vol. 2023,pp. 1-10, Taylor & Francis, 2023, doi: 10.1080/07391102 .2023.2242492.

J. A. Cruz and D. S. W., “Applications of Machine Learning in CancerPrediction and Prognosis,” Journals SAGEPUB, [Online]. Available: https://journals.sagepub.com/doi/abs/10.1177/117693510600200030.

D. Soldato et al., “The Future of Breast Cancer Research in the Survivorship Field,” Oncol. Ther., vol. 11, no. 2, pp. 199-229, Jun. 2023, doi: 10.1007/s40487-023-00225-8.

K. C. Thandra, A. Barsouk, K. Saginala, J. S. Aluru, and A. Barsouk,“Epidemiology of Lung Cancer,” Termedia Publishing House Ltd., 2021, doi: 10.5114/wo.2021.103829.

K. Chaitanya Thandra, A. Barsouk, K. Saginala, J. Sukumar Aluru, and A.Barsouk, “Epidemiology of Lung Cancer,” Współczesna Onkol., vol. 25, no. 1, pp. 45-52, 2021, doi: 10.5114/wo.2021.103829.

W. A. Cooper, D. C. L. Lam, S. A. O’Toole, and J. D. Minna,“Molecular Biology of Lung Cancer,” J. Thorac. Dis., vol. 5 Suppl 5,pp. S479-90, Oct. 2013, doi: 10.3978/j.issn.2072-1439.2013.08.03.

M. Zheng, Classification and Pathology of Lung Cancer, W.B. Saunders, 2016, doi: 10.1016/j.soc.2016.02.003.

J. A. Barta, C. A. Powell, and J. P. Wisnivesky, Global Epidemiology of Lung Cancer, Ubiquity Press, 2019, doi: 10.5334/aogh.2419.

E. Dritsas and M. Trigka, “Lung Cancer Risk Prediction with Machine Learning Models,” Big Data Cogn. Comput., vol. 6, no. 4, p. 139,Nov. 2022, doi: 10.3390/bdcc6040139.

O. Ernest, O. Komolafe, S. O., and A. Oludele, “Ontology: A Case for Disease and Drug Knowledge Discovery,” Commun. Appl. Electron.,vol. 5, no. 9, pp. 6-13, Sep. 2016, doi: 10.5120/cae2016652362.

A. Shankar et al., “Environmental and Occupational Determinants ofLung Cancer,” Transl. Lung Cancer Res., vol. 8, no. Suppl 1, pp. S31-S49, May 2019, doi: 10.21037/tlcr.2019.03.05.

J. A. Barta, C. A. Powell, and J. P. Wisnivesky, “Global Epidemiology of Lung Cancer,” Ann. Glob. Heal., vol. 85, no. 1, Jan. 2019, doi: 10.5334/aogh.2419.

N. Ghaffar Nia, E. Kaplanoglu, and A. Nasab, “Evaluation of Artificial Intelligence Techniques in Disease Diagnosis and Prediction,” Discov. Artif. Intell., vol. 3, no. 1, p. 5, Jan. 2023, doi: 10.1007/s44163-023-00049-5.

Y. Li, X. Wu, P. Yang, G. Jiang, and Y. Luo, “Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis,” GenomicsProteomics Bioinformatics, vol. 20, no. 5, pp. 850-866, 2022,doi: 10.1016/j.gpb.2022.11.003.

K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis, “Machine Learning Applications in Cancer Prognosis and Prediction,” Comput. Struct. Biotechnol. J., vol. 13, pp. 8-17, 2015,doi: 10.1016/j.csbj.2014.11.005.

F. Alharbi and A. Vakanski, “Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review,” Bioengineering, vol. 10, no. 2, p. 173, Jan. 2023, doi: 10.3390/bioengineering10020173.

A. A. Adegbenjo et al., “Design and Analysis of an Automated IoT System for Data Flow Optimization in Higher Education Institutions,” J. Eur. des Systèmes Autom., vol. 56, no. 5, pp. 889-897, Oct. 2023, doi: 10.18280/jesa.560520.

G. H. M. Sousa, R. A. Gomes, E. O. de Oliveira, and G. H. G. Trossini, “Machine Learning Methods Applied for the Prediction of Biological Activities of Triple Reuptake Inhibitors,” J. Biomol. Struct. Dyn., vol. 41, no. 20, pp. 10277-10286, Dec. 2023, doi: 10.1080/07391102.2022.2154269.

S. Suganyadevi, V. Seethalakshmi, and K. Balasamy, “A Review onDeep Learning in Medical Image Analysis,” Int. J. Multimed. Inf. Retr., vol. 11, no. 1, pp. 19-38, 2022, doi: 10.1007/s13735-021-00218-1.

S. Bindas and E. Onuiri, “A Deep Learning Approach to Speech Recognition for Detection of Mental Disorders,” Curr. TRENDS Inf. Commun. Technol. Res., vol. 2, no. 1, pp. 28-46, 2023, doi: 10.61867/ pcub.v2i1a.042.

E. E. Onuiri, O. Akande, O. B. Kalesanwo, T. Adigun, K. Rosanwo,and K. C. Umeaka, “A Systematic Review of Machine Learning Prediction Models for Colorectal Cancer Patient Survival Using Clinical Data and Gene Expression Profiles,” Rev. d’Intelligence Artif.,vol. 37, no. 5, pp. 1273-1280, 2023, doi: 10.18280/ria.370520.

Z. Sajjadnia, R. Khayami, and M. R. Moosavi, “Preprocessing Breast Cancer Data to Improve the Data Quality, Diagnosis Procedure, and Medical Care Services,” Cancer Inform., vol. 19, p. 117693 512091795, Jan. 2020, doi: 10.1177/1176935120917955.

H. Mohajan and H. K. Mohajan, “Two Criteria for Good Measurements in Research: Validity and Reliability,” Munich Personal RePEc Archive, 2017.

R. Caso et al., “The Underlying Tumor Genomics of PredominantHistologic Subtypes in Lung Adenocarcinoma,” J. Thorac. Oncol., vol. 15, no. 12, pp. 1844-1856, Dec. 2020, doi: 10.1016/j.jtho.2020.08.005.

Q. Li et al., “Combining Autophagy and Immune Characterizations to Predict Prognosis and Therapeutic Response in Lung Adenocarcinoma,” Front. Immunol., vol. 13, 2022, doi: 10.3389/fimmu.2022.944378.

M. Amir-Behghadami and A. Janati, “Population, Intervention ,Comparison, Outcomes and Study (PICOS) Design as a Framework to Formulate Eligibility Criteria in Systematic Reviews,” Emerg. Med. J., vol. 37, no. 6, pp. 387-387, Jun. 2020, doi: 10.1136/emermed-2020-209567.

M. J. Page et al., “The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews,” BMJ, p. n71, Mar. 2021, doi: 10.1136/bmj.n71.

N. Wang, M. Chai, L. Zhu, J. Liu, C. Yu, and X. Huang, “Development and Validation of Polyamines Metabolism-Associated Gene Signatures to Predict Prognosis and Immunotherapy Response in Lung Adenocarcinoma,” Front. Immunol., vol. 14, 2023, doi: 10.3389/fimmu.2023.1070953.

Y. Liu et al., “Development and Validation of Machine Learning Models to Predict Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer: A Multi-Center Retrospective Radiomics Study,” Cancer Control, vol. 29, 2022,doi: 10.1177/10732748221092926.

H. Lee et al., “Evaluating County-Level Lung Cancer Incidence from Environmental Radiation Exposure, PM(2.5), and Other Exposure with Regression and Machine Learning Models,” Environ. Geochem. Health, vol. 46, no. 3, p. 82, 2024, doi: 10.1007/s10653-023-01820-4.

Q. Cai et al., “Exploration of Predictive and Prognostic Alternative Splicing Signatures in Lung Adenocarcinoma Using Machine Learning Methods,” J. Transl. Med., vol. 18, no. 1, 2020, doi: 10.1186/s12967-020-02635-y.

K. M. S. Rani and V. K. Prasad, “Exploring Machine Learning in Lung Cancer: Predictive Modelling, Gene Associations, and Challenges,”Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 6s, pp. 490-499, 2023, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167990741&partnerID=40&md5=d96b5427eecc8ea6a8d04218bbf9290c.

J. Pati, “Gene Expression Analysis for Early Lung Cancer Prediction Using Machine Learning Techniques: An Eco-Genomics Approach,”IEEE Access, vol. 7, pp. 4232-4238, 2019, doi: 10.1109/ACCESS.2018.2886604.

S. Okser, T. P.-B. Mining, “Genetic Variants and Their Interactions in Disease Risk Prediction - Machine Learning and Network Perspectives,” Biodata Mining, vol. 6, no. 5, 2013, [Online]. Available: https://biodatamining.biomedcentral.com/articles/10.1186/1756-0381-6-5.

K.-M. Wang, K.-H. Chen, C. A. Hernanda, S.-H. Tseng, and K.-J.Wang, “How Is the Lung Cancer Incidence Rate Associated with Environmental Risks? Machine-Learning-Based Modeling and Benchmarking,” Int. J. Environ. Res. Public Health, vol. 19, no. 14, 2022, doi: 10.3390/ijerph19148445.

Y. Li et al., “Prediction of Lung Cancer Risk in Chinese Population with Genetic-Environment Factor Using Extreme Gradient Boosting,” Cancer Manag. Res., vol. 11, no. 23, pp. 4469-4478, 2022,doi: 10.1002/cam4.4800.

Downloads

Published

25-04-2024

How to Cite

Onuiri, E., Akwaronwu, B. G., & Umeaka, K. C. (2024). Environmental and Genetic Interaction Models for Predicting Lung Cancer Risk Using Machine Learning: A Systematic Review and Meta-Analysis. Asian Journal of Computer Science and Technology, 13(1), 45–58. https://doi.org/10.70112/ajcst-2024.13.1.4266