A Novel Pre-Processing Approach for the Denoising of Alzheimer Disease Image Dataset
DOI:
https://doi.org/10.51983/ajcst-2018.7.2.1870Keywords:
Thresholding, Histogram Equalization, Wavelet transform, DenoisingAbstract
Medical imaging doing an indispensable part in the area of medicine. Noise in the image is maddening as it worsens the quality of image. Thus, removal of noise is perpetually a problematic work in the images of all domain. Alzheimer’s disease, a neurological dysfunction in which destruction of cells in brain creates mental weakening and memory loss. The distinguished reason for Alzheimer’s disease is low brain activity and low blood flow. We proposed a framework for removal of noise in Alzheimer disease image using histogram equalization, thresholding, open morphological operation and a wavelet transform. This framework reduces the noise and significantly better than the existing methods used for Alzheimer disease images.
References
Y. Yang et al., "Gender’s Effects to the Early Symptoms of Alzheimer’s Disease in 5 Asian Countries," American Journal of Alzheimer’s Disease & Other Dementias, vol. 32, no. 4, pp. 194-199, 2017.
K. K. Gulhare, S. P. Shukla, and L. K. Sharma, "Overview on segmentation and classification for the Alzheimer’s disease detection from brain MRI," pp. 130-132, 2017.
J. Klosowski and J. Frahm, "Image denoising for real‐time MRI," Magnetic Resonance in Medicine, vol. 77, no. 3, pp. 1340-1352, 2017.
A. Khatami et al., "Medical image analysis using wavelet transform and deep belief networks," Expert Systems with Applications, vol. 86, pp. 190-198, 2017.
A. Gunja et al., "Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory," Cardiovascular Revascularization Medicine, vol. 18, no. 3, pp. 197-201, 2017.
V. S. Bhadouria et al., "A novel image impulse noise removal algorithm optimized for hardware accelerators," Journal of Signal Processing Systems, vol. 89, no. 2, pp. 225-242, 2017.
J. Anitha, J. Dinesh Peter, and S. I. A. Pandian, "A dual stage adaptive thresholding (DuSAT) for automatic mass detection in mammograms," Computer Methods and Programs in Biomedicine, vol. 138, pp. 93-104, 2017.
A. Zear, A. K. Singh, and P. Kumar, "A proposed secure multiple watermarking technique based on DWT, DCT and SVD for application in medicine," Multimedia Tools and Applications, vol. 77, no. 4, pp. 4863-4882, 2018.
V. Singh and D. Aswani, "Face Detection in Hybrid Color Space Using HBF-KNN," Proceedings of International Conference on Recent Advancement on Computer and Communication, Springer, Singapore, 2018.
K. Amitab et al., "Impulse Noise Reduction in Digital Images Using Fuzzy Logic and Artificial Neural Network," Proceedings of the International Conference on Computing and Communication Systems, Springer, Singapore, 2018.
S. Gupta and S. Roy, "Medav Filter—Filter for Removal of Image Noise with the Combination of Median and Average Filters," Recent Trends in Signal and Image Processing, Springer, Singapore, pp. 11-19, 2019.
Y. Liang and L. Wang, "Alzheimer’s disease is an important risk factor of fractures: a meta-analysis of cohort studies," Molecular Neurobiology, vol. 54, no. 5, pp. 3230-3235, 2017.
D. Bhardwaj et al., "Alzheimer’s disease—Current Status and Future Directions," Journal of Medicinal Food, vol. 20, no. 12, pp. 1141-1151, 2017.
H. He et al., "Co-altered functional networks and brain structure in unmedicated patients with bipolar and major depressive disorders," Brain Structure and Function, vol. 222, no. 9, pp. 4051-4064, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 The Research Publication
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.